Question

Ball 1 has mass mand is moving to the right at v0= 7.50 m/s. It collides...

Ball 1 has mass mand is moving to the right at v0= 7.50 m/s. It collides with ball two, of mass 3m, which is at rest. After the collision ball 1 has a velocity of v1= 4.50 m/s at an angle of =30.0°relative to its original direction. Determine the magnitude and direction of the velocity, v2, of ball 2 after the collision. The correct answer is Vf=1.42m/s and theta= -32.0. How do I find these answers?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.5 g steel ball moving 0.40 m/s collides elastically with a stationary, identical ball. As...
A 2.5 g steel ball moving 0.40 m/s collides elastically with a stationary, identical ball. As a result, the incident ball is deflected 30.0 degrees from its initial path (remember the 90 degree rule for same masses). 1. Draw a vector diagram showing the momentum of each ball after the collision 2. What is the velocity of the incident ball after the collision? 3. What is the velocity of the struck ball after the collision? H: m1v0 = m1v1cos theta1...
A car of mass m moving at a speed v1 collides and couples with the back...
A car of mass m moving at a speed v1 collides and couples with the back of a truck of mass 3m moving initially in the same direction as the car at a lower speed v2. (Use any variable or symbol stated above as necessary.) (a) What is the speed vf of the two vehicles immediately after the collision? vf = (b) What is the change in kinetic energy of the car–truck system in the collision? ?K =
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...
A 6.85 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 32.0° with respect to the initial direction of the bowling ball. ( a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the original direction) of the bowling ball. ______magnitude m/s __________direction ° counterclockwise from the original direction of the bowling ball (b) Ignoring rotation, what was...
A 2.50 kg mass moving 7.50 m/s to the right collides head on with a 4.90...
A 2.50 kg mass moving 7.50 m/s to the right collides head on with a 4.90 kg mass. After the collision the 2.50 kg mass is moving 5.00 m/s to the left and the 4.90 kg mass is moving 4.88 m/s to the right. a. Calculate the velocity of the 4.90 kg mass before the collision b. If the collision lasts for 0.0625 seconds calculate the force that acted on each mass during the collision.
A 0.40 kg soccer ball is moving to the right with speed of 25m/s when it...
A 0.40 kg soccer ball is moving to the right with speed of 25m/s when it collides with a 0.60 kg basketball moving to the left with speed of 20 m/s. The basketball bounces off with speed of 12 m/s at an angle of 32.0° relative to its initial path as shown if the figure. At what angle, φ, relative to its original path does the soccer ball move after the collision? What is the speed of the soccer ball...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.97 m/s, at an angle of 31.0° with respect to the original line of motion. (a) Find the velocity (magnitude and direction) of the second ball after collision. ______ m/s ° (with respect to the original line of motion, include the sign of your answer; consider the sign of the first ball's angle)(b) Was the collision inelastic...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A 5.5 kg bowling ball moving at 9.55 m/s collides with a 0.875kg bowling pin, which...
A 5.5 kg bowling ball moving at 9.55 m/s collides with a 0.875kg bowling pin, which is scattered at an angle of theta = 84.5 degrees from the initial direction of the bowling ball, with a speed of 17m/s a) calculate the direction, in degrees, of the final velocity of the bowling ball. This angle should be measured in the same way that theta is. b) calculate the magnitude of the final velocity, in meters per second, of the bowling...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest. Assume that the collision is perfectly elastic.    A)What is be the speed of the 0.484-kg ball after the collision? B)What is be the direction of the velocity of the 0.484-kg ball after the collision? C)What is the speed of the 0.242-kg ball after the collision? D)What is the direction of the velocity of 0.242-kg ball after...
Ball A has a mass of 5kg and is initially moving at 3m/s, and ball B...
Ball A has a mass of 5kg and is initially moving at 3m/s, and ball B has a mass of 6kg and is traveling at -5m/s. Ball A then collides with ball B head on. After the collision, ball A is moving at -4m/s, what velocity is ball B moving at? Was this an elastic or inelastic collision?