Question

An electromagnetic wave in a vacuum traveling in the +x direction generated by a variable source...

An electromagnetic wave in a vacuum traveling in the +x direction generated by a variable source initially has a wavelength (lambda) of 305microm and a maximum electric field Emax in the +y direction of 8.00x10^-3V/m . If the period of the wave is then increased by a factor of 1.50, what is the equation of the resulting magnetic field component of the wave?

What are the coefficients in the equation for the magnetic field component of the wave after the period increases by a factor of 1.50?

Enter the maximum magnetic field, wavenumber, and angular frequency in teslas, inverse meters, and radians per second separated by commas.

Bmax, k,w? = ____________

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.5 V/m) cos[(π × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component?
A sinusoidal electromagnetic plane wave is traveling in the +y direction under water, with an index...
A sinusoidal electromagnetic plane wave is traveling in the +y direction under water, with an index of refraction n = 1.33. The wave is polarized along the z-axis and has a vacuum wavelength of A_0 = 500nm. A. What is the phase velocity of the wavefront in water? B. What is the wavenumber of the electromagnetic wave in water? C. What is the linear frequency of the electromagnetic wave in water? D. If the electric field amplitude is 31.0 V/m,...
Considering you have monochromatic plane electromagnetic wave traveling (in a vacuum) in the positive z direction....
Considering you have monochromatic plane electromagnetic wave traveling (in a vacuum) in the positive z direction. Use Maxwell's equation, show that: C) The electromagnetic wave is transverse D) the B and E fields are perpendicular to each other
A plane electromagnetic wave, with wavelength 4.0 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 4.0 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 270 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
A plane electromagnetic wave, with wavelength 2.5 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 2.5 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 270 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
A plane electromagnetic wave, with wavelength 3.9 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 3.9 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 360 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m...
a plane electromagnetic sinusoidal wave propagating in the x direction. Suppose the wavelength is 48.0 m and the electric field vibrates in the xy plane with an amplitude of 20.0 V/m. (a) Calculate the frequency of the wave.__________ MHz (b) Calculate the magnetic field B when the electric field has its maximum value in the negative y direction. magnitude __________nT (c) Write an expression for B with the correct unit vector, with numerical values for Bmax, k, and ω, and...
A plane wave of wavelength 100 nm is polarized along z direction and travelling along -x...
A plane wave of wavelength 100 nm is polarized along z direction and travelling along -x direction with the electric field amplitude of 300 V/m (in vacuum). The maximum value of wave is at t=0 and x=0. Write the wave equation of magnetic field Calculate the intensity and Poynting vector of electromagnetic wave.
A plane electromagnetic wave, with wavelength 3.3 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 3.3 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 130 V/m, oscillates parallel to the y axis. (a) What is the frequency of the wave?   Hz (b) What is the angular frequency of the wave? rad/s (c) What is the angular number of the wave? rad/m (d) What is the amplitude of the magnetic field component? T (e) Parallel to which axis does the magnetic...
A sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz travels in the positive x...
A sinusoidal plane electromagnetic wave having a frequency of 3.00 GHz travels in the positive x direction. If the amplitude of the electric field is 300 V.m-1 and the speed of light in vacuum is taken as 3.0 x 108 m.s-1, write down wave equation in terms of E(x,t) and B(x,t), where x is in meters and t is in seconds for the electric field and the magnetic field.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT