Question

Consider a series AC circuit with L = 3.5mH, R = 50Ω, C = 10μF, and...

Consider a series AC circuit with L = 3.5mH, R = 50Ω, C = 10μF, and E0 = 60V.

1) Find the amplitude of the current, f = 1250Hz.

2) Explain in words why the amplitude of the voltages across the capacitor, resistor, and inductor can add up to more than the amplitude of the voltage of the power supply?

3) Find the phase angle for the circuit at f = 1250Hz, what does this angle indicate is happening in this circuit?

4) Describe in detail what happens to the amplitude of the current as the frequency reduced to 580Hz.

5) Draw a phase diagram for the circuit at f = 580Hz.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
In an L-R-C series circuit, L = 0.391 H , R = 310 ? , and...
In an L-R-C series circuit, L = 0.391 H , R = 310 ? , and C = 5.99×10?8 F . When the ac source operates at the resonance frequency of the circuit, the current amplitude is 0.499 A . What is the voltage amplitude of the source? What is the amplitude of the voltage across the resistor? What is the amplitude of the voltage across the inductor? What is the amplitude of the voltage across the capacitor? What is...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
In an L-R-C series circuit, 310 ? , 0.399 H , and 6.01×10?8 F . When...
In an L-R-C series circuit, 310 ? , 0.399 H , and 6.01×10?8 F . When the ac source operates at the resonance frequency of the circuit, the current amplitude is 0.508 A a. What is the voltage amplitude of the source? b. What is the amplitude of the voltage across the resistor? c. What is the amplitude of the voltage across the inductor? d. What is the amplitude of the voltage across the capacitor? e. What is the average...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant shown in the phasor diagram,  ω t = π 3. If the voltage amplitude across the resistor is VR = 16.00 V, and the voltage amplitude across the inductor is also VL = 16.00 V, then what is the instantaneous voltage across the inductor at the instant shown in the phasor diagram?
In a series circuit, suppose R=230Ω, L=370mH, C=0.75μF, V=85V, and ω=4500rad/s. Find the reactance XL. Find...
In a series circuit, suppose R=230Ω, L=370mH, C=0.75μF, V=85V, and ω=4500rad/s. Find the reactance XL. Find the reactance XC. Find the impedance Z. Find the current amplitude I. Find the phase angle ϕ. Find the voltage amplitude across the resistor. Find the voltage amplitude across the inductor. Find the voltage amplitude across the capacitor.
An L-R-C circuit has L = 4.5 H, R = 80 Ω, C = 45 μF...
An L-R-C circuit has L = 4.5 H, R = 80 Ω, C = 45 μF (μF = 10-6 F) connected in series to the voltage source with an amplitude 45 V and frequency 50 Hz. Find the instantaneous values at t = 6 ms (ms = 10-3 s) of the voltages (in V) across the voltage source v, resistor vR, inductor vL, and capacitor vC
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz. (a) What is the impedance of the circuit? (b) What is the peak current in the circuit? (c) What is the peak voltage across the resistor? (d) What is the peak voltage across the inductor? (e) What is the peak voltage across the capacitor? (f) What is the...
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The...
A circuit is constructed with an AC generator, a resistor, capacitor and inductor as shown. The generator voltage varies in time as ε =Va - Vb = εmsinωt, where εm = 120 V and ω = 651 radians/second. The values for the remaining circuit components are: R = 97 Ω, L = 114.8 mH, and C = 11.9μF. 3) What is φ, the phase angle between the generator voltage and the current in this circuit. The phase φ is defined...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT