Question

A horizontal spring with spring constant 250 N/m is compressed by 20 cm and then used...

A horizontal spring with spring constant 250 N/m is compressed by 20 cm and then used to launch a 250 g box across the floor. The coefficient of kinetic friction between the box and the floor is 0.23.

What is the box's launch speed?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch...
A horizontal spring with spring constant 150 N/m is compressed 17 cm and used to launch a 2.9 kg box across a frictionless, horizontal surface. After the box travels some distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Use work and energy to find how far the box slides across the rough surface before stopping. Express your answer to two significant figures and include the appropriate units.
A spring with a spring constant of 5000 N/m is compressed 25 cm by a mass...
A spring with a spring constant of 5000 N/m is compressed 25 cm by a mass of 2 kg. The mass is released and the spring propels the mass across the floor. After the mass leaves the spring it experiences drag on the floor. The kinetic coefficient of friction between the mass and the floor 0.25.   What is the maximum speed of the cart? How far does the cart slide before it come to a stop?
One end of a horizontal spring with force constant 130.0 N/m N / m is attached...
One end of a horizontal spring with force constant 130.0 N/m N / m is attached to a vertical wall. A 5.00-kg k g block sitting on the floor is placed against the spring. The coefficient of kinetic friction between the block and the floor is μk μ k = 0.400. You apply a constant force F⃗ F → to the block. F⃗ F → has magnitude 81.0 N N and is directed toward the wall. The spring is compressed...
A 100 ? / ? constant spring horizontal spring compresses 20 ?? and is used to...
A 100 ? / ? constant spring horizontal spring compresses 20 ?? and is used to launch a 2.5 ?? box across a horizontal surface without friction. After the box travels a certain distance, the surface becomes rough. The coefficient of kinetic friction of the box on the surface is 0.15. Determine how far the box slides on the rough surface before stopping.
A 89 g box is attached to a horizontal spring an compressed 9 cm to the...
A 89 g box is attached to a horizontal spring an compressed 9 cm to the left with a spring constant of 34 N/m. The box is released and undergoes SHM. a. What is the max speed of the box b. What is the speed of the box when it reaches 6.9 cm from the equilibrium position?
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is...
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0340 m . The spring has force constant 850 N/m . The coefficient of kinetic friction between the floor and the block is 0.42 . The block and spring are released from rest and the block slides along the floor. Part A What is the speed of the block when it has moved a distance of 0.0190 m from its initial position?...
A box with a mass of 1.386 kilograms collides head-on with a spring constant of 1.26...
A box with a mass of 1.386 kilograms collides head-on with a spring constant of 1.26 m*N. When the box stopped, the spring was compressed by 25.05 centimeters. The kinetic friction coefficient between the box and the floor is 0.484 and the gravitational acceleration is 9.8 m/s2. At this point, obtain the speed (m/s) of the box just before it comes into contact with the spring.
A block with a mass m = 2.12 kg is pushed into an ideal spring whose...
A block with a mass m = 2.12 kg is pushed into an ideal spring whose spring constant is k = 3810 N/m. The spring is compressed x = 0.069 m and released. After losing contact with the spring, the block slides a distance of d = 2.07 m across the floor before coming to rest. a) Write an expression for the coefficient of kinetic friction between the block and the floor using the symbols given in the problem statement...
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm....
You push a 3.2 kg block against a horizontal spring, compressing the spring by 16 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 62 cm from where you released it. The spring constant is 170 N/m. What is the coefficient of kinetic friction between the block and the table?
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm....
You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 84 cm from where you released it. The spring constant is 280 N/m. What is the coefficient of kinetic friction between the block and the table?