Question

Two in phase speakers 2.0m a part in a plane are emitting 1800 Hz sound waves...

Two in phase speakers 2.0m a part in a plane are emitting 1800 Hz sound waves of equal intensity into a room where the speed of sound is 340 m/s.

If the individual intensities of the loud speaker sound is I0, what is the intensity at this point in terms of I0? Ignore distance depedence of intensity in this problem.

Homework Answers

Answer #1

Let usc consider the sound wave is sinusoidal. the wave-length corresponding to 1800Hz and velocity 340m/s is

As both the wave has same velocity and they are approaching towards each other then they will meet at the mid point. That is before meeting each will travese 1m distance each. Before reaching at mid point both will complete 5 full wavelength and each will carry an additional phase of .

When two wave with same phase interefere each other then it is constructive interference and the final intensity can be given by . Here both the intensity is IO. Thus the final intensity would be 3* IO.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two speakers generate harmonic sound waves that are in phase at 686 Hz. The speakers face...
Two speakers generate harmonic sound waves that are in phase at 686 Hz. The speakers face the same direction. The speed of sound is 343 m/s. Find the phase difference between the two waves received at the following locations. (a) 4.80 m from each speaker rad (b) 2.42 m from one speaker and 3.72 m from the other rad (c) 2.42 m from one speaker and 4.80 m from the other rad (d) 2.42 m from one speaker and 3.37...
Two identical loudspeakers 2.20 m apart are emitting sound waves into a room where the speed...
Two identical loudspeakers 2.20 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 4.00 m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound. What is the lowest possible frequency of sound for which this is possible?
Suppose two speakers are arranged such that they emit identical sound waves, and are separated by...
Suppose two speakers are arranged such that they emit identical sound waves, and are separated by 4m. A microphone is positioned 3m above one of the speakers. If the speed of sound is 340 m/s, and both speakers start in phase, are turned on at the same time, and emit the same frequency, what is the lowest frequency such that the microphone picks up no sound? You may ignore amplitude reduction due to distance for this problem.
Two speakers, facing each other, produce coherent sound waves that interfere destructively at a point that...
Two speakers, facing each other, produce coherent sound waves that interfere destructively at a point that is ¾ of the way from one speaker to the other. If the speed of sound is 343 m/s, and the sound waves are emitted in phase at 880 Hz, which of the following is a possible distance between the two speakers? a. 2.3 m b. 0.58 m c. 1.56 m d. 77 cm e. 2.7 m
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m...
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m behind speaker 1, and the phase difference between the speakers is 90 degree . (I) What is the phase difference of the sound wave at a point 2.00 m in front of speaker 1? (II) What is the minimum distance between the two speakers such that the observer at this position hears the minimal sound? (6 points)
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other....
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other. A person initially stands 1.6 meters in front      of one of the speakers. The person then walks directly away from this speaker. How far will the person have walked when they hear the combined sounds from the two speakers reach a minimum in loudness for the third time? The power output of each speaker is 2.40 mW. What is the sound intensity level...
Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are...
Follow these steps to solve this problem: Two identical loudspeakers, speaker 1 and speaker 2, are 2.0 m apart and are emitting 1700-Hz sound waves into a room where the speed of sound is 340 m/s. Consider a point 4.0 m in front of speaker 1, which lies along a line from speaker 1, that is perpendicular to a line between the two speakers. Is this a point of maximum constructive interference, a point of perfect destructive interference, or something...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The speed of sound is 344.0 m/s. Point q is vertically located 2.0 m from the bottom speaker and 5.0 m from the top speaker. At point q, is there maximum constructive interference, complete destructive interference, or neither?? Explain your answer.
Speakers A and B are vibrating in phase. They are directly facing each other, are 1.29...
Speakers A and B are vibrating in phase. They are directly facing each other, are 1.29 m apart, and are each playing a 725 Hz tone. The speed of sound is 343 m/s. On the line between the speakers there are points where minimum sound intensity occurs. What is the distance of the nearest point from speaker A?
Two speakers that are 15m apart produce in phase sound waves of frequency 250Hz in a...
Two speakers that are 15m apart produce in phase sound waves of frequency 250Hz in a room where the speed of sound is 340m/s. A woman starts out at the midpoint between the two speakers . The room's walls and ceiling are covered with absorbers to eliminate reflections, and she listens with only one ear for best precision. (a) What does she hear: constructive or destructive interference? (b) she now walks slowly toward one of the speakers. How far from...