Question

PLEASE SHOW ALL WORK: Two narrow slits of width 0.04 mm are separated by 0.4 mm...

PLEASE SHOW ALL WORK:

Two narrow slits of width 0.04 mm are separated by 0.4 mm and illuminated by a light source made up of light of wavelength 355 nm (blue). A viewing screen is located 4.2 m to from the slits. (a) (b) (c) (d) Assuming that the fringes look like the ones shown in the image,

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) Two narrow, parallel slits, separated by a distance of 0.25 mm, are illuminated by a...
a) Two narrow, parallel slits, separated by a distance of 0.25 mm, are illuminated by a light source whose wavelength is 480 nm. Calculate the angular separation of the central bright maximum and the first-order bright fringe. b) Two narrow, parallel slits, separated by a distance of 0.25 mm, are illuminated by a light source whose wavelength is 480 nm. (a) Calculate the angular separation of the central bright maximum and the first-order bright fringe. (b) Calculate the linear separation...
Two narrow slits separated by 0.05 mm are illuminated with light  = 540 nm. How...
Two narrow slits separated by 0.05 mm are illuminated with light  = 540 nm. How many bands of bright lines are there between the central maximum and the 12-cm position? (The distance between the double slits and the screen is 1 m).
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
Q1 [30 pts]: Two parallel narrow horizontal slits in an opaque vertical screen are separated center-to-center...
Q1 [30 pts]: Two parallel narrow horizontal slits in an opaque vertical screen are separated center-to-center by 3.8 . These are directly illuminated by a laser system. Horizontal fringes are formed on a vertical viewing screen 4 from the aperture plane. The center of the fourth bright band is 3.5 above the center of the zeroth or central bright band. a. (10 points) Determine the wavelength of the light in air.
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?
4) Two narrow slits are separated by a distance d. Their interference pattern is to be...
4) Two narrow slits are separated by a distance d. Their interference pattern is to be observed on a screen a large distance L away. a) Calculate the spacing y of the maxima of the screen for light of wavelength 500 nm when L = 1 m and d = 1 cm. b) Would you expect to observe the interference of light on the screen for this situation? Explain. c) How close together should the slits be placed for the...
A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (?...
A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (? = 546.1 nm). The interference pattern is observed on a screen 1.10 m away from the plane of the parallel slits. (a) Calculate the distance from the central maximum to the first bright region on either side of the central maximum. ________________mm (b) Calculate the distance between the first and second dark bands in the interference pattern. ________________mm
White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed...
White light falls on two narrow slits separated by 0.40 mm. The interference pattern is observed on a screen 3.0 m away. What is the separation between the first maxima for red light (l = 700 nm) and the first maxima for violet light (l = 400 nm)?
Two slits separated by a distance of d = 0.11mm are located at a distance of...
Two slits separated by a distance of d = 0.11mm are located at a distance of D = 780mm from a screen. The screen is oriented parallel to the plane of the slits. The slits are illuminated by a coherent light source with a wavelength of lambda = 524E-6 mm. The interference pattern shows a peak at the center of the screen (m=0) and then alternating minima and maxima. 1. [1pt] What is the pathlength difference between the two waves...
Two narrow slits 0.02 mm apart are illuminated by light from a CuAr laser (λ =...
Two narrow slits 0.02 mm apart are illuminated by light from a CuAr laser (λ = 633 nm) onto a screen. a)What is the angle of the first (m = 1) bright fringe?b)If the first fringe is 0.2 cm away from the central fringe, what is the screen distance?c)What is the angle of the first dark fringe?d)What is the angle of the thirtieth bright fringe?e)If I illuminated the slits with a HeNe laser and found an angle for the first...