Question

Two electrons are held 0.5 x 10^-10m find PE initial acceleration and Velocity when they’re far...

Two electrons are held 0.5 x 10^-10m find PE initial acceleration and Velocity when they’re far apart

Homework Answers

Answer #1

please upvote it if you have satisfied

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is held 18.0 m above the ground. How far apart would two different electrons...
An electron is held 18.0 m above the ground. How far apart would two different electrons need to be held in order to have the same potential energy as the first electron? What is the potential 5.3 mm away from a 1.6 μC point charge? a. What distance from a 15 nC charge would have the same potential?
Two equally charged particles, held 4.2 x 10-3 m apart, are released from rest. The initial...
Two equally charged particles, held 4.2 x 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 7.4 m/s2 and that of the second to be 11 m/s2. If the mass of the first particle is 5.9 x 10-7 kg, what are (a) the mass of the second particle and (b) the magnitude of the charge (in C) of each particle?
Two equally charged particles are held 4.1 ✕ 10−3 m apart and then released from rest. The initial acceleration of the...
Two equally charged particles are held 4.1 ✕ 10−3 m apart and then released from rest. The initial acceleration of the first particle is observed to be 5.5 m/s2 and that of the second to be 9.4 m/s2. The mass of the first particle is 6.3 ✕ 10−7 kg. (a) What is the mass of the second particle?   kg  (b) What is the magnitude of the charge of each particle?   C
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial...
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 7.3 m/s2 and that of the second to be 8.4 m/s2. If the mass of the first particle is 8.5 × 10-7 kg, what are (a) the mass of the second particle and (b) the magnitude of the charge of each particle?
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial...
Two equally charged particles, held 4.0 × 10-3 m apart, are released from rest. The initial acceleration of the first particle is observed to be 5.5 m/s2 and that of the second to be 9.0 m/s2. If the mass of the first particle is 7.8 × 10-7 kg, what are (a) the mass of the second particle and (b) the magnitude of the charge of each particle?
When at the origin (0,0) the initial velocity of a particle is ?⃗0 = (2.0?̂ +...
When at the origin (0,0) the initial velocity of a particle is ?⃗0 = (2.0?̂ + 5.0?̂) ? / ? and its constant acceleration is ?⃗ = (7.0?̂ + 5.0?̂) ? / ? two . Find the final position of the particle when its velocity is ?⃗ = (16.0?̂ + 15.0?̂) ? / ?. (First find the time it takes to reach your position final).
Two particles each have a mass of 5.6 x 10-4 kg. One has a charge of...
Two particles each have a mass of 5.6 x 10-4 kg. One has a charge of +5.4 x 10-6 C, and the other has a charge of -5.4 x 10-6 C. They are initially held at rest at a distance of 0.72 m apart. Both are then released and accelerate toward each other. How fast is each particle moving when the separation between them is one-third its initial value?
One particle has a mass of 2.11 x 10-3 kg and a charge of +8.91 μC....
One particle has a mass of 2.11 x 10-3 kg and a charge of +8.91 μC. A second particle has a mass of 7.27 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.128 m, the speed of the 2.11 x 10-3 kg-particle is 142 m/s. Find the initial separation between the particles.
One particle has a mass of 4.58 x 10-3 kg and a charge of +6.79 μC....
One particle has a mass of 4.58 x 10-3 kg and a charge of +6.79 μC. A second particle has a mass of 8.66 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.193 m, the speed of the 4.58 x 10-3 kg-particle is 191 m/s. Find the initial separation between the particles.
An electron with an initial velocity magnitude of 4 x 10^6 m/s is at the origin...
An electron with an initial velocity magnitude of 4 x 10^6 m/s is at the origin and comes to rest over a distance of 2 centimeters by a parallel plate capacitor electric field. Find the potential difference between the origin and the location at which the electron is at rest.  
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT