Question

A pion initially at rest decays into a muon plus a neutrino which move in opposite...

A pion initially at rest decays into a muon plus a neutrino which move in opposite directions. The pion rest mass is 140 MeV/c2and the muon rest mass is 106 MeV/c2. For the sake of this problem assume that the neutrino is massless and follows the appropriate relations for massless particles. a)What is the speedof the muon? b)What are the energies of the muon and the neutrino?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A K+-meson (with a rest mass of 493.7 MeV/c2) initially at rest decays into a μ+...
A K+-meson (with a rest mass of 493.7 MeV/c2) initially at rest decays into a μ+ (positive muon with rest mass of 105.7 MeV/c2), Two photons and a neutrino (assume exactly zero rest mass - not quite true). The Muon is observed to move along the x-axis with momentum 100MeV/c. The two photons are observed to have identical energies but opposite directions along the positive and negative y-axes. The neutrino (not shown) is unseen. Find the energies of the photons.Hint:...
Consider the reaction ?+ ? ?+ + ? in which a pion decays into a neutrino...
Consider the reaction ?+ ? ?+ + ? in which a pion decays into a neutrino and an antimuon. If the pion is stationary before decay determine the kinetic energies of the neutrino and the antimuon. The rest energies of the pion and muon are 139.6 MeV and 105.7 MeV respectively. K? =???, K?+ =???
1a: ​A negative pion ( ) is a particle that​ ​has a mass equal to 2.49...
1a: ​A negative pion ( ) is a particle that​ ​has a mass equal to 2.49 x 10​-28​ kg. What is the rest π− energy of the pion in joules and in megaelectron-volts (MeV)? 2b: ​A negative pion is observed to be moving to the right at 0.950​c ​ .​ ​ What is the negative pion’s total energy (in MeV) ​and ​ momentum at this speed? 3c: ​The negative pion decays (splits) into two particles, a muon ( ) and...
A neutral pion, π0, moving at 0.999c relative to the lab frame decays into two massless...
A neutral pion, π0, moving at 0.999c relative to the lab frame decays into two massless particles. One particle moves in the same direction as the pion did while the other moves in the opposite direction. The pion has a mass of 135 GeV/c2. What are the energy and momentum of the massless particles as measured in the lab frame? As measured in the pion’s rest frame? Can you explain this? step-by step Thanks for helping!
A kaon with a speed 0.8c in the laboratory decays into two pions, one positively charged...
A kaon with a speed 0.8c in the laboratory decays into two pions, one positively charged and the other negatively charged. The rest mass of the kaon is 498 MeV/c2 and the rest mass of the pion is 140 MeV/c2. (a) What is the total energy of the kaon in the laboratory frame? (b) In the rest frame the two pions must go off in opposite directions to conserve momentum. What is the energy of each of the pions in...
One of the many fundamental particles in nature is the muon mu. This particle acts very...
One of the many fundamental particles in nature is the muon mu. This particle acts very much like a "heavy electron." It has a mass of 106 MeV/c^2, compared to the electron's mass of just 0.511 MeV/c^2. (We are using E = mc^2 to obtain the mass in units of energy and the speed of light c). Unlike the electron, though, the muon has a finite lifetime, after which it decays into an electron and two very light particles called...
(1) (A) In models of interacting nucleons, the pion is the virtual carrier particle that mediates...
(1) (A) In models of interacting nucleons, the pion is the virtual carrier particle that mediates the interaction. Assume that in one such nuclear interaction, the mass of the virtual pion is 120 MeV/c2. Determine the lifetime (in s) and range (in m) of this virtual pion acting. Assume the virtual pion moves at nearly the speed of light. (B)When an electron and positron collide at the SLAC facility, they each have 55.9 GeV kinetic energies. What is the total...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with mass 6.68×10−27kg. This decay process releases 1.5×10−14J of energy. For this problem, let's assume that the mass of the Beryllium-8 nucleus is just twice the mass of an α particle and that all the energy released in the decay becomes kinetic energy of the α particles. Part A If a Beryllium-8 nucleus is at rest when it decays, what is the speed of the  α...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with...
Beryllium-8 is an unstable isotope and decays into two α particles, which are helium nuclei with mass 6.68×10−27kg. This decay process releases 1.5×10−14J of energy. For this problem, let's assume that the mass of the Beryllium-8 nucleus is just twice the mass of an α particle and that all the energy released in the decay becomes kinetic energy of the α particles. If a Beryllium-8 nucleus is at rest when it decays, what is the speed of the α particles...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT