Question

The molecular mass of helium is 4 g/mol, the Boltzmann’s constant is 1.38066 × 10−23 J/K,...

The molecular mass of helium is 4 g/mol, the Boltzmann’s constant is 1.38066 × 10−23 J/K, the universal gas constant is 8.31451 J/K · mol, and Avogadro’s number is 6.02214 × 1023 1/mol. Given: 1 atm = 101300 Pa.

A: How many atoms of helium gas are required to fill a balloon to diameter 29 cm at 57◦C and 1.171 atm?

B: What is the average kinetic energy of each helium atom? Answer in units of J.

C: What is the rms speed of each helium atom? Answer in units of m/s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1- A heat engine operates between two reservoirs at temperatures of 70◦C and 170◦C. What is...
1- A heat engine operates between two reservoirs at temperatures of 70◦C and 170◦C. What is the maximum efficiency possible for this engine? 2)The molecular mass of helium is 4 g/mol, the value of Boltzmann’s constant is 1.38066 × 10−23 J/K, the universal gas constant is 8.31451 J/K · mol, and Avogadro’s number is 6.02214 × 1023 1/mol. How many atoms of helium gas are required to fill a balloon to diameter 35 cm at 17◦C and 1.787 atm? 1...
A cylinder contains 250 g of Helium at 200 K. The external pressure is constant at...
A cylinder contains 250 g of Helium at 200 K. The external pressure is constant at 1 atm. The temperature of the gas inside the cylinder is then lowered by 85 K. Calculate q for this system in response to the change made. Include units of J when entering your answer. Heat capacity for Helium = 20.8 J/(mol K) Molecular weight for Helium = 4 g/mol I tried doing the q=Cp*m*dT and got 110500 J but it was incorrect.
A sample of helium behaves as an ideal gas as it is heated at constant pressure...
A sample of helium behaves as an ideal gas as it is heated at constant pressure from 253 K to 393 K. If 70 J of work is done by the gas during this process, what is the mass of the helium sample? The universal gas constant is 8.31451 J/mol · K. Answer in units of g.
A helium-filled balloon at 315.0 K and 1 atm, contains 0.30 g He, and has a...
A helium-filled balloon at 315.0 K and 1 atm, contains 0.30 g He, and has a volume of 1.29 L. It is placed in a freezer (T = 250.0 K), and its volume decreases to 0.93 L. Find ΔE for the gas (in joules). (Cp of He = 20.8 J/mol K.)
6.The constant pressure specific heat of an ideal gas is 390 J/kg•K. The molar mass of...
6.The constant pressure specific heat of an ideal gas is 390 J/kg•K. The molar mass of the gas is 60 g/mol. What is its constant volume molar specific heat? Group of answer choices 15 J/mol•K 9.0 J/mol•K 21 J/mol•K 27 J/mol•K 7.A heat reservoir at 500 K is in thermal contact with another reservoir at 300 K. If a net 75 kJ of heat is exchanged, what is the change in entropy of the 500 K reservoir? Group of answer...
A cube 17 cm on each side contains 2.2 g of helium at 20∘C. 1100 J...
A cube 17 cm on each side contains 2.2 g of helium at 20∘C. 1100 J of heat energy are transferred to this gas. Part A What is the final pressure if the process is at constant volume? Express your answer to two significant figures and include the appropriate units. Part B What is the final volume if the process is at constant pressure? Express your answer to two significant figures and include the appropriate units.
A rigid cubic container of side 0.25 m is filled with 10 moles of the ideal...
A rigid cubic container of side 0.25 m is filled with 10 moles of the ideal gas Xenon and is then sealed so that no gas can get out or in. The initial pressure of the gas is recorded as 2.8 x 105 Pa. You may use the following values for this question: Gas constant R: 8.31 J/(mol K) Boltzmann constant kB : 1.38 x 10-23 J/K Avogadro's number NA: 6.02 x 1023 /mol A) Determine the total amount of...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result —...
2 Equipartition The laws of statistical mechanics lead to a surprising, simple, and useful result — the Equipartition Theorem. In thermal equilibrium, the average energy of every degree of freedom is the same: hEi = 1 /2 kBT. A degree of freedom is a way in which the system can move or store energy. (In this expression and what follows, h· · ·i means the average of the quantity in brackets.) One consequence of this is the physicists’ form of...
A weather balloon contains 222 L of He gas at 20. °C and 760. mmHg. What...
A weather balloon contains 222 L of He gas at 20. °C and 760. mmHg. What is the volume of the balloon when it ascends to an altitude where the temperature is -40. °C and 540. mmHg? 1 What volume does 12.5 g of Ar gas at a pressure of 1.05 atm and a temperature of 322 K occupy? Would the volume be different if the sample were 12.5 g of He gas under the same conditions? How many moles...
Instructions: Choose 8 of the 10 problems below. Show your work in detail. Answer the questions...
Instructions: Choose 8 of the 10 problems below. Show your work in detail. Answer the questions directly in this template. Before doing this, it is highly recommending that you thoroughly review the three examples in the Unit Lesson. Consider two stable isotopes, helium-3 and helium-4. How many neutrons and protons are there in each isotope? What are the mass numbers? Hint: Do not confuse mass number with atomic mass. Review the definition of them. If two protons and two neutrons...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT