Question

- A series RLC circuit has R=15 ?, L=1.5 H, and C=15 ?F. (a) For what...

- A series RLC circuit has R=15 ?, L=1.5 H, and C=15 ?F. (a) For what angular frequency of applied emf will the current be a maximum? (b) At what angular frequencies will the current be half maximum?

please help me as fast as possible thank you

Homework Answers

Answer #1

current= voltage/impedance

so current will be maximum when impedance is minimum

as impedance will be minimum when capactive impedance is equal and opposite of inductive reactance

so if angualr frequency is w,

then 1/(w*C)=w*L

then w=210.82 rad/sec

frequency=w/(2*pi)=33.553 Hz


part 2:

for current to be half of the maximum, the impedance has to be twice the minimum

hence sqrt(R^2+(Xl-Xc)^2)=2*R=30

where Xl=w*1.5

Xc=1/(w*15*10^(-6))

then 15^2+(Xl-Xc)^2=30^2

Xl-Xc=675

1.5*w-(6.67*10^4/w)=675

1.5*w^2-6.67*10^4=675*w

solving for w , we get

w=533.33 rad/sec

in Hz, it will be w/(2*pi)=84.882 Hz

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a series RLC circuit, R = 100 Ω, L = 50 H and C =...
In a series RLC circuit, R = 100 Ω, L = 50 H and C = 2 μF. If the alternating emf applied is ε(t) = 20 Sin(5πt), find the rms current and the power factor for the circuit.  
In a series RLC circuit, R = 100 Ω, L = 50 H and C =...
In a series RLC circuit, R = 100 Ω, L = 50 H and C = 2 μF. If the alternating emf applied is ε(t) = 20 Sin(5πt), find the rms current and the power factor for the circuit.
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8...
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8 ?F. It is connected to an AC source with f = 60.0 Hz and ?Vmax = 150 V. Suppose the frequency is now increased to f = 93 Hz, and we want to keep the impedance unchanged. (a) What new resistance should we use to achieve this goal? R = ____ ? (b) What is the phase angle (in degrees) between the current and...
An L-R-C series circuit has L = 0.480 H, C = 2.90×10−5 F, and a resistance...
An L-R-C series circuit has L = 0.480 H, C = 2.90×10−5 F, and a resistance R. What is the angular frequency of the circuit when R=0? What value must R have to give a percent decrease in angular frequency of 5.00 % compared to the value calculated in part (A)?
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown)...
A series RLC circuit (L = 24 mH, C = 40 μF, and R = unknown) has an AC generator with frequency f = 310 Hz and amplitude Emax = 120 V. The peak instantaneous current in the circuit is Imax = 1.4 A. What is φ = the phase angle between the driving EMF and the current in the circuit? Define φ to be positive if the voltage leads the current and φ to be negative if the current...
An L-R-C series circuit has R = 70.0 Ω , L = 0.600 H , and...
An L-R-C series circuit has R = 70.0 Ω , L = 0.600 H , and C = 7.00×10−4 F . The ac source has voltage amplitude 70.0 V and angular frequency 110 rad/s . 1) What is the maximum energy stored in the inductor? 2) When the energy stored in the inductor is a maximum, how much energy is stored in the capacitor? 3) What is the maximum energy stored in the capacitor?
Given an RLC series circuit as shown in Figure Q2(b), where L = 5/3 H, R...
Given an RLC series circuit as shown in Figure Q2(b), where L = 5/3 H, R = 10 Ω , C = 1/30 F, and E(t) = 300 V. A): Find the charge across the capacitor in an RLC series circuit. Assume the initial charge on the capacitor is 0 C and the initial current is 9 A. B): What happens to the charge on the capacitor over time? (Hint: Explain the meaning on the answer obtained in I NEED...
A RLC SERIES circuit has C=2 F, L=6 H and R=8 Ohms, considering that at instant...
A RLC SERIES circuit has C=2 F, L=6 H and R=8 Ohms, considering that at instant t=0 the power supply (4 V) is activated, determine the value of the TENSION ON THE INDUCTOR at the instant that power supply is activated.
In a series RLC circuit, R = 160ohm, L = 0.2H, C = 5uF and the...
In a series RLC circuit, R = 160ohm, L = 0.2H, C = 5uF and the voltage applied to the circuit is deltav (t) = (80V) sin (wt). Find the maximum potential difference between the ends of the inductor in case of resonance.
The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25...
The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25 H, and C = 198 µF. The applied AC voltage has a frequency of f = 60 Hz and a voltage of Δv = 120 V. 1-Find the inductive reactance, capacitive reactance, and impedance. XL = ........ Ω XC = ........ Ω Z = ......... Ω 2-Find the phase difference between current and voltage............. ° 3-Find the voltages ΔvR, ΔvL, and ΔvC. ΔvR =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT