Question

A boy stands at the center of a turntable, which has a moment of inertia of...

A boy stands at the center of a turntable, which has a moment of inertia of 1.50 kg·m2 about an axis through its center. The boy's moment of inertia about the same axis, when he holds his arms in, is 1.10 kg·m2; when he sticks his arms straight out, his moment of inertia is 1.80 kg·m2. He and the turntable are initially rotating at a rate of 2.00 rad/s, with his arms extended.

            a.         He pulls in his arms. What is his new angular speed?

            b.         What is the change in the BOY'S kinetic energy when he pulls his arms in?

            c.         If each of the boy's hands has a mass of .750 kg, and is 70.0 cm from his body when his arms are extended, what is the centripetal force on one of his hands when his arms are sticking out?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A person stands at the center of a turntable, holding his arms extended horizontally with a...
A person stands at the center of a turntable, holding his arms extended horizontally with a 1.5 kg dumbbell in each hand. He is set rotation about a vertical axis, making one revolution in 2 seconds. Find the new angular velocity if he pulls the dumbbells in to his middle. His moment of inertia (without dumbbells) is 3 kgm2 when his arms are out stretched, dropping to 2.2 kgm2 when his hands are at his middle. The dumbbells are 1...
A turntable has a moment of inertia of 3.0 × 10−2 kg·m2 and spins freely on...
A turntable has a moment of inertia of 3.0 × 10−2 kg·m2 and spins freely on a frictionless bearing at 25 rev/min. A 0.60-kg ball of putty is dropped vertically on the turntable and sticks at a point 0.10 m from the center. By what factor does the kinetic energy of the system change after the putty is dropped onto the turntable? a. 1.0 b. 0.83 c. 1.5 d. 0.91
In this example we see how a system can have constant angular momentum without having a...
In this example we see how a system can have constant angular momentum without having a constant angular velocity! A physics professor stands at the center of a turntable, holding his arms extended horizontally, with a 5.0 kg dumbbell in each hand (Figure 1). He is set rotating about a vertical axis, making one revolution in 2.0 s. His moment of inertia (without the dumbbells) is 3.4 kg⋅m2 when his arms are outstretched, and drops to 1.8 kg⋅m2 when his...
A 50 kg woman stands at the rim of a horizontal turntable having a moment of...
A 50 kg woman stands at the rim of a horizontal turntable having a moment of inertia of 560 kg·m2 and a radius of 2.0 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.5 m/s relative to the Earth. (a) In what direction and with what angular speed...
A student sits on a freely rotating stool holding two weights, each of mass 2.93 kg....
A student sits on a freely rotating stool holding two weights, each of mass 2.93 kg. When his arms are extended horizontally, the weights are 1.10 m from the axis of rotation and he rotates with an angular speed of 0.754 rad/s. The moment of inertia of the student plus stool is 2.93 kg·m2 and is assumed to be constant. The student pulls the weights inward horizontally to a position 0.296 m from the rotation axis. (a) Find the new...
A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia...
A 55.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 420 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...
In this example we see how a system can have constant angular momentum without having a...
In this example we see how a system can have constant angular momentum without having a constant angular velocity! A physics professor stands at the center of a turntable, holding his arms extended horizontally, with a 5.0 kgkg dumbbell in each hand (Figure 1). He is set rotating about a vertical axis, making one revolution in 2.0 ss. His moment of inertia (without the dumbbells) is 3.4 kg⋅m2kg⋅m2 when his arms are outstretched, and drops to 1.8 kg⋅m2kg⋅m2 when his...
A 65.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia...
A 65.0-kg woman stands at the rim of a horizontal turntable having a moment of inertia of 460 kg · m2 and a radius of 2.00 m. The turntable is initially at rest and is free to rotate about a frictionless vertical axle through its center. The woman then starts walking around the rim clockwise (as viewed from above the system) at a constant speed of 1.50 m/s relative to the Earth. (a) In what direction does the turntable rotate?...
A turntable with a moment of inertia of 5.4 × 10−3 kg. m2 reaches a constant...
A turntable with a moment of inertia of 5.4 × 10−3 kg. m2 reaches a constant rotational speed of 45 rpm from rest in 6.30 seconds. a. Find the number of revolutions the turntable made during this time. b. Determine the rotational work done by the applied torque for increasing the angular speed from zero to 45 rpm. c. While rotating at a constant rotational speed of 45 rpm, a mouse of 32-g was kept 15 cm from the center....
The moment of inertia of an ice skater is 0.400 kg·m2 when he is spinning at...
The moment of inertia of an ice skater is 0.400 kg·m2 when he is spinning at 6.00 rev/s. (a) He reduces his angular velocity by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity decreases to 1.25 rev/s. (b) Suppose instead he keeps his arms in and allows friction on the ice to slow him to 3.00 rev/s What average torque was exerted if this takes 15.0 s?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT