Question

A bullet of mass 10.0 gram moving at a velocity of 336 m/s toward the right...

A bullet of mass 10.0 gram moving at a velocity of 336 m/s toward the right strikes an orange of mass 90.0 gram. The bullet passes through the orange and in the process pulls out 10.0 grams of orange innards. Assuming that this collision is elastic (i.e., that no kinetic energy is lost), what is the velocity of the rest of the remaining 80 grams of orange? Take rightward motion to be positive and leftward motion to be negative. Hint: It is easiest to do this problem if you first shift to the center of mass frame of the orange & bullet, determine the velocities of both objects after the collision in that frame, and then shift back to the "lab" frame.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose...
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose velocity is -2.5 m/s i and whose mass is 0.12 kg. The motion takes place in one dimension. (a) What are the final velocities of the objects if the collision is elastic? b.) What is the total initial kinetic energy in the collision?
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign +...
A 5.14-g bullet is moving horizontally with a velocity of +342 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign +...
A 7.81-g bullet is moving horizontally with a velocity of +363 m/s, where the sign + indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign...
A 4.00g bullet is moving horizontally with a velocity of +355 m/s, where the + sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the...
A bullet of mass m = 61 grams, traveling with a velocity v upwards, strikes the...
A bullet of mass m = 61 grams, traveling with a velocity v upwards, strikes the bottom of a ball of mass M = 2.3 kg which is resting in a hole in a table. After the collision, the ball, with the bullet embedded in it, rises up and returns to the table after 0.79 seconds. How fast was the bullet moving as it struck the ball?
A bullet of mass m = 51 grams, traveling with a velocity v upwards, strikes the...
A bullet of mass m = 51 grams, traveling with a velocity v upwards, strikes the bottom of a ball of mass M = 5.6 kg which is resting in a hole in a table. After the collision, the ball, with the bullet embedded in it, rises up and returns to the table after 0.57 seconds. How fast was the bullet moving as it struck the ball?
A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates...
A 4.00-g bullet is moving horizontally with a velocity of 355 m/s, where the sign indicates that it is moving to the right (see part a of the drawing). The bullet is approaching two blocks resting on a horizontal frictionless surface. Air resistance is negligible. The bullet passes completely through the first block (an inelastic collision) and embeds itself in the second one, as indicated in part b. Note that both blocks are moving after the collision with the bullet....
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into...
A bullet of mass 4 g moving with an initial speed 400 m/s is fired into and passes through a block of mass 5 kg, as shown in the figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring of force constant 538 N/m. If the block moves a distance 1.3 cm to the right after the bullet passed through it, find the speed v at which the bullet emerges from the block and...
10. A bullet of mass M1= 0.4 Kg moving with initial velocity V1i= 800 m/s gets...
10. A bullet of mass M1= 0.4 Kg moving with initial velocity V1i= 800 m/s gets embedded into a block of wood of mass M2= 3.6 Kg that was initially at rest (V2i=0). The block is attached to a spring having spring constant K=400 N/m. After making the inelastic collision, the bullet-block combination slides on a horizontal frictioless surface and compresses the spring. Part A The amount of compression distance  delta X by which the spring gets compressed by the bullet-block...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward...
A ball with mass of 0.025 kg is thrown horizontally with velocity of 1.5 m/s toward a wall in positive X direction. It collides with the wall, then bounces back to the left with velocity of 1.0 m. The Collison takes 0.015s. What is the total initial momentum? b) What is the total final momentum? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the wall by the ball during the collision?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT