Question

8.4 x 1024 particles of monatomic ideal gas are at a temperature of 310 K. What...

  1. 8.4 x 1024 particles of monatomic ideal gas are at a temperature of 310 K.
    1. What is the total internal energy of the gas?
    2. If 2600 J of heat is added to the gas, and 950 J of work is done on the gas, what is the new internal energy of the gas?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and 1 atm. (a) What is its initial internal energy? _____ kJ (b) Find its final internal energy and the work done by the gas when 420 J of heat are added at constant pressure. final internal energy ________kJ work done by the gas _______kJ (c) Find the same quantities when 420 J of heat are added at constant volume. finale internal energy ________kJ work...
Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5...
Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5 K. (a) What is the work W done by the gas? J (b) What is the energy transferred as heat Q? J (c) What is the change ΔEint in the internal energy of the gas? J (d) What is the change ΔK in the average kinetic energy per atom? J
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature...
An ideal monatomic gas expands isothermally from 0.600 m3 to 1.25 m3 at a constant temperature of 730 K. If the initial pressure is 1.02 ? 105 Pa find the following. (a) the work done on the gas J (b) the thermal energy transfer Q J (c) the change in the internal energy J
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature T = 300K, and volumeV = 20 L. Find: (a) The pressure in the gas in Pa. (b) The work done in Joules when the gas is compressed slowly and isothermally to half its volume. (c) The change in internal energy of the gas in Joules during process (b). (d) The heat (in J) absorbed or given up by the gas during process (b)....
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally from a volume of 1.23 L to a volume of 4.44 L. a) Sketch a P vs.V graph. b) Calculate the work done by the gas. c) Calculate the heat flow into or out of the gas. d) If the number of moles is doubled, by what factors do your answers to parts (b) and (c) change? Explain.
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant...
3. An ideal monatomic gas expands isothermally from .500 m3 to 1.25 m3 at a constant temperature of 675 K. If the initial pressure is 1.00 ∙ 105 Pa, find (a) the work done by the gas, (b) the thermal energy transfer Q, and (c) the change in the internal energy.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT