Question

A drum major twirls a 93-cm-long, 460 g baton about its center of mass at 150...

A drum major twirls a 93-cm-long, 460 g baton about its center of mass at 150 rpm .

What is the baton's rotational kinetic energy?

Homework Answers

Answer #1

Mass of the baton = M = 460 g = 0.46 kg

Length of the baton = L = 93 cm = 0.93 m

Moment of inertia of the baton about it's center of mass = I

I = 0.03315 kg.m2

Angular speed of the baton = = 150 rpm = 150 x (2/60) rad/s = 15.708 rad/s

Rotational kinetic energy of the baton = E

E = 4.09 J

Rotational kinetic energy of the baton = 4.09 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 350 g ball and a 600 g ball are connected by a 49.0-cm-long massless, rigid...
A 350 g ball and a 600 g ball are connected by a 49.0-cm-long massless, rigid rod. The structure rotates about its center of mass at 170 rpm. What is its rotational kinetic energy?
A flying disk (150 g, 25.0 cm in diameter) spins at a rate of 290 rpm...
A flying disk (150 g, 25.0 cm in diameter) spins at a rate of 290 rpm with its center balanced on a fingertip. What is the rotational kinetic energy of the Frisbee if the disc has 70% of its mass on the outer edge (basically a thin ring 25.0-cm in diameter) and the remaining 30% is a nearly flat disk 25.0-cm in diameter? 1)What is the rotational kinetic energy of the Frisbee? (Express your answer to two significant figures.)
A flying disk (180 g, 30.0 cm in diameter) spins at a rate of 340 rpm...
A flying disk (180 g, 30.0 cm in diameter) spins at a rate of 340 rpm with its center balanced on a fingertip. What is the rotational kinetic energy of the Frisbee if the disc has 70% of its mass on the outer edge (basically a thin ring 30.0-cm in diameter) and the remaining 30% is a nearly flat disk 30.0-cm in diameter? 1) What is the rotational kinetic energy of the Frisbee
A lawn mower has a flat, rod-shaped steel blade that rotates about its center. The mass...
A lawn mower has a flat, rod-shaped steel blade that rotates about its center. The mass of the blade is 0.65 kg and its length is 0.55 m What is the rotational energy of the blade at its operating angular speed of 3490 rpm ? If all of the rotational kinetic energy of the blade could be converted to gravitational potential energy, to what height would the blade rise?
A uniform, solid sphere of mass 2.6 kg and diameter 33 cm is rotating about its...
A uniform, solid sphere of mass 2.6 kg and diameter 33 cm is rotating about its diameter at 150 rev/min. A) What is the kinetic energy of rotation? B) If an additional 1.74 J of energy are supplied to the rotational motion, what is the resulting rate of rotation? Give your answer in rev/min.
In the figure the lower disk, of mass 440 g and radius 3.7 cm , is...
In the figure the lower disk, of mass 440 g and radius 3.7 cm , is rotating at 180 rpm on a frictionless shaft of negligible radius. The upper disk, of mass 280 g and radius 2.0 cm , is initially not rotating. It drops freely down onto the lower disk, and frictional forces bring the two disks to a common rotational speed. A) Find the common speed. B) Find the fraction of the initial kinetic energy lost to friction.
A yo-yo has a rotational inertia of 1250 g·cm2 and a mass of 137 g. Its...
A yo-yo has a rotational inertia of 1250 g·cm2 and a mass of 137 g. Its axle radius is 1.61 mm, and its string is 91.2 cm long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy,...
A yo-yo has a rotational inertia of 1100 g·cm2 and a mass of 118 g. Its...
A yo-yo has a rotational inertia of 1100 g·cm2 and a mass of 118 g. Its axle radius is 1.99 mm, and its string is 133 cm long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy,...
A yo-yo has a rotational inertia of 813 g·cm2 and a mass of 95.9 g. Its...
A yo-yo has a rotational inertia of 813 g·cm2 and a mass of 95.9 g. Its axle radius is 1.91 mm, and its string is 113 cm long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy,...
A yo-yo has a rotational inertia of 1000 g·cm2 and a mass of 127 g. Its...
A yo-yo has a rotational inertia of 1000 g·cm2 and a mass of 127 g. Its axle radius is 2.46 mm, and its string is 123 cm long. The yo-yo rolls from rest down to the end of the string. (a) What is the magnitude of its linear acceleration? (b) How long does it take to reach the end of the string? As it reaches the end of the string, what are its (c) linear speed, (d) translational kinetic energy,...