Question

An oscillator consists of a block of mass 0.461 kg connected to a spring. When set...

An oscillator consists of a block of mass 0.461 kg connected to a spring. When set into oscillation with amplitude 29 cm, the oscillator repeats its motion every 0.546 s. Find the (a) period, (b) frequency, (c) angular frequency, (d) spring constant, (e) maximum speed, and (f) magnitude of the maximum force on the block from the spring.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An oscillator consists of a block of mass 0.900 kg connected to a spring. When set...
An oscillator consists of a block of mass 0.900 kg connected to a spring. When set into oscillation with amplitude 27.0 cm, it is observed to repeat its motion every 0.400 s. (a) Find the period. s (b) Find the frequency. hz (c) Find the angular frequency. rad/s (d) Find the spring constant. N/m (e) Find the maximum speed. m/s (f) Find the maximum force exerted on the block. N please show work and answer
A simple harmonic oscillator consists of a 675-g block attached to a lightweight spring. The total...
A simple harmonic oscillator consists of a 675-g block attached to a lightweight spring. The total energy of the system is 9.40 J, and its period of oscillation is 0.340 s. (a) What is the maximum speed of the block? Did you accidentally divide or take the inverse in your calculation? m/s (b) What is the force constant of the spring? N/m (c) What is the amplitude of the motion of the block? m
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A block-spring system consists of a spring with constant k = 445 N/m attached to a...
A block-spring system consists of a spring with constant k = 445 N/m attached to a 2.25 kg block on a frictionless surface. The block is pulled 4.10 cm from equilibrium and released from rest. For the resulting oscillation, find the amplitude, angular frequency, frequency, and period. What is the maximum value of the block's velocity and acceleration?
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force...
A spring-mass system consists of a 0.5 kg mass attached to a spring with a force constant of k = 8 N/m. You may neglect the mass of the spring. The system undergoes simple harmonic motion with an amplitude of 5 cm. Calculate the following: 1. The period T of the motion 2. The maximum speed Vmax 3. The speed of the object when it is at x = 3.5 cm from the equilibrium position. 4. The total energy E...
A horizontal block spring oscillator of mass 15 kg on a frictionless table and spring constant...
A horizontal block spring oscillator of mass 15 kg on a frictionless table and spring constant k is pulled 3 m to the right and released; after 0.1 seconds the block just passes the equilibrium position. a) Find at t= 1 second the angular frequency, frequency, period, position, velocity, acceleration, and force on the block. b) Draw the velocity function of the block over two periods.
An oscillator consists of a block attached to a spring (k = 125 N/m). At some...
An oscillator consists of a block attached to a spring (k = 125 N/m). At some time t, the position (measured from the system's equilibrium location), velocity, and acceleration of the block are x = 0.700 m, v = −12.0 m/s, and a = −128 m/s2. (a) Calculate the frequency of oscillation. Incorrect: Your answer is incorrect. Hz (b) Calculate the mass of the block. kg (c) Calculate the amplitude of the motion. m
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350...
(15 pts) A 0.50 kg object connected to a spring with a spring constant of 350 N/m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. a) What is the angular frequency of the oscillation? b) What is the maximum speed of the object? c) At what position does this maximum speed occur? d) What is the acceleration of the object at x = 2.00 cm? e) What is the total energy of the mass-spring system?
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is...
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is 10^4 dynas/cm. At time t=0, the mass is about 3 cm from the equilibrium point and with an initial velocity of 5cm/s, both in the positive direction.A dissipative force is now added. Assume that you start moving from rest at the maximum amplitude position, and after oscillating for 10 s, your maximum amplitude is reduced to half of the initial value. Calculate: A- dissipation...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. What is the spring constant of the spring? 2) What is the oscillation frequency? After t = 0.32 s what is the speed of the block? What...