Question

A certain oscillator obeys the following equation: x = 1.60 cos(1.30t – 2.32) cm, for t...

A certain oscillator obeys the following equation: x = 1.60 cos(1.30t – 2.32) cm, for t in seconds and angles in radians. At t = 0, find its: a) displacement b) velocity c) acceleration d) Repeat for t= 0.60 s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt)...
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt) − (4.2 cm)sin(12πt), where t is in seconds.Find the amplitude. m (b) Determine the period. s (c) Determine the initial phase. °
A harmonic oscillator is described by the function x(t) = (0.350 m) cos(0.490t). Find the oscillator's...
A harmonic oscillator is described by the function x(t) = (0.350 m) cos(0.490t). Find the oscillator's maximum velocity and maximum acceleration. Find the oscillator's position, velocity, and acceleration when t = 1.25 s. (a) oscillator's maximum velocity (in m/s) (b) oscillator's maximum acceleration (m/s2) (c) oscillator's position (in m) when t = 1.25 s (d) oscillator's velocity (in m/s) when t = 1.25 s (e) oscillator's acceleration (in m/s2) when t = 1.25 s
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
The position of a particle is given in cm by x = (2) cos 9?t, where...
The position of a particle is given in cm by x = (2) cos 9?t, where t is in seconds. (a) Find the maximum speed. 0.565 m/s (b) Find the maximum acceleration of the particle. _______m/s2 (c) What is the first time that the particle is at x = 0 and moving in the +x direction? _______s
The displacement of an oscillating mass is given by x(t) = 20 cos( 4 t )....
The displacement of an oscillating mass is given by x(t) = 20 cos( 4 t ). A) What is the initial velocity of the mass at time t = 0 s? m/s Tries 0/2 B) What is the initial acceleration of the mass at time t = 0 s? m/s2 Tries 0/2 C) At time t = 0.5π s, what is the displacement of the mass? m Tries 0/2 D) At time t = 0.5π s, what is the velocity...
The x component of the velocity of an object vibrating along the x-axis obeys the equation...
The x component of the velocity of an object vibrating along the x-axis obeys the equation vx(t) = (0.445 m/s) sin[(25.4 rad/s)t + 0.223] 1) What is the object’s acceleration when its velocity has a maximum positive value? 2) What is the object’s position x when it has a velocity of -0.200 m/s and a positive acceleration value?
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body....
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body. At t = 2.1 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion? 2) An oscillating block-spring system takes 0.746 s to begin repeating its motion. Find (a) the period, (b) the frequency in hertz, and (c) the angular frequency in radians per second.
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t /.1 s)) where x is in meters and t is in seconds. a. Is the wave travelling to the right or to the left? _________ b. What is the wave frequency? __________ c. What is the wavelength? ___________ d. What is the wave speed? _________ e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
Calculate Using Maltab. The displacement of the oscillating spring can be described by: x = A*cos(ω*t)...
Calculate Using Maltab. The displacement of the oscillating spring can be described by: x = A*cos(ω*t) where: x = displacement at time t, +ve means upward -ve means downwards A = maximum displacement, ω = angular frequency in radians per second, and t = time in seconds If the maximum displacement A = 4 cm and the angular frequency is 0.6 radians per second. What is the shortest time at which the displacement is equal to 2 cm (upwards)? a)1.745...
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t...
An object moves along the x axis according to the equation x = 4.00t2 − 2.00t + 3.00, where x is in meters and t is in seconds. (a) Determine the average speed between t = 1.60 s and t = 3.20 s. The average speed is the distance traveled divided by the time. Is the distance traveled equal to the displacement in this case? m/s (b) Determine the instantaneous speed at t = 1.60 s.   m/s Determine the instantaneous...