Question

A 50-pF capacitor and a 200-pF capacitor are both charged to 1.70 kV. They are then...

A 50-pF capacitor and a 200-pF capacitor are both charged to 1.70 kV. They are then disconnected from the voltage source and are connected together, positive plate to negative plate and negative plate to positive plate.

(a) Find the resulting potential difference across each capacitor.

V50 pF = kV

V200 pF = kV

(b) Find the energy lost when the connections are made.

µJ

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 140-pF capacitor and a 560-pF capacitor are both charged to 2.10 kV. They are then...
A 140-pF capacitor and a 560-pF capacitor are both charged to 2.10 kV. They are then disconnected from the voltage source and are connected together, positive plate to negative plate and negative plate to positive plate. (a) Find the resulting potential difference across each capacitor. V140 pF = _____kV V560 pF = _____kV (b) Find the energy lost when the connections are made. _____µJ
A 140 pF capacitor and a 560 pF capacitor are both charged to 4.2 kV. They...
A 140 pF capacitor and a 560 pF capacitor are both charged to 4.2 kV. They are then disconnected from the voltage source and are connected together, positive plate to positive plate and negative plate to negative plate. Find the energy lost when the connections are made. ___________J
A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They...
A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They are then disconnected from the voltage source and are connected together, positive plate to positive plate and negative plate to negative plate. Find the energy lost when the connections are made. ________J
A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They...
A 90 pF capacitor and a 360 pF capacitor are both charged to 2.6 kV. They are then disconnected from the voltage source and are connected together, positive plate to positive plate and negative plate to negative plate. Find the energy lost when the connections are made. ________J I got 9.735e-4 but it was incorrect
A 27-pF capacitor is charged to 5.0 kV and then removed from the battery and connected...
A 27-pF capacitor is charged to 5.0 kV and then removed from the battery and connected to an uncharged 70-pF capacitor. (a) What is the new charge on each capacitor? Q27 = nC Q70 = nC (b) Find the energy stored in the 27-pF capacitor before it is disconnected from the battery, and the energy stored in the capacitors after they are connected to each other. Ui = µJ Uf = µJ c.Does the stored energy increase or decrease when...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0...
A 6.0 µF capacitor and a 5.0 µF capacitor are connected in series across a 3.0 kV potential difference. The charged capacitors are then disconnected from the source and connected to each other with terminals of like sign together. Find the charge on each capacitor (in mC) and the voltage across each capacitor (in V).
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor that are connected in parallel. The three capacitors are connected to a 26 V battery. A) What is the equivalent capacitance of the circuit? B) How much charge is on the 13 pF capacitor? C) What is the potential difference across the 5 pF capacitor? D) A parallel plate capacitor of plate area A and plate separation d is fully charged using a battery...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor...
A 13 pF capacitor is connected in series with a 5 pF and 9 pF capacitor that are connected in parallel. The three capacitors are connected to a 26 V battery. (Show all your work!) A) What is the equivalent capacitance of the circuit? B) How much charge is on the 13 pF capacitor? C) What is the potential difference across the 5 pF capacitor? D) A parallel plate capacitor of plate area A and plate separation d is fully...
Two capacitors, one that has a capacitance of 5 µF and one that has a capacitance...
Two capacitors, one that has a capacitance of 5 µF and one that has a capacitance of 15 µF are first discharged and then are connected in series. The series combination is then connected across the terminals of a 15-V battery. Next, they are carefully disconnected so that they are not discharged and they are then reconnected to each other--positive plate to positive plate and negative plate to negative plate. (a) Find the potential difference across each capacitor after they...
Two capacitors, one that has a capacitance of 7 µF and one that has a capacitance...
Two capacitors, one that has a capacitance of 7 µF and one that has a capacitance of 21 µF are first discharged and then are connected in series. The series combination is then connected across the terminals of a 10-V battery. Next, they are carefully disconnected so that they are not discharged and they are then reconnected to each other--positive plate to positive plate and negative plate to negative plate. (a) Find the potential difference across each capacitor after they...