Question

A 10.2 gram mass is attached to an ideal spring with a spring constant 30 N/m....

A 10.2 gram mass is attached to an ideal spring with a spring constant 30 N/m. The mass is displaced 5.55cm from equilibrium position. What is the maximum velocity of the mass in m/s? Answer to the nearest hundredth. For example 4.26784 m/s would be 4.27m/s

Homework Answers

Answer #1

Solution :

Given :

m = 10.2 g = 0.0102 kg

k = 30 N/m

A = 5.55 cm = 0.0555 m

.

According to the principle of conservation of energy : KE = PE

(1/2) m v2 = (1/2) k A2

  m v2 = k A2

  (0.0102 kg) v2 = (30 N/m)(0.0555 m)2

v2 = 9.0596 (m/s)2

v = 3.01 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A frictionless block of mass 2.45 kg is attached to an ideal spring with force constant...
A frictionless block of mass 2.45 kg is attached to an ideal spring with force constant 320 N/mN/m . At t=0 the spring is stretched to 6 cm from the equilibrium position and released. Find the position of the block at t=5 s Find the velocity of the block at t=5 s Find the acceleration of the block at t=5 s
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant...
A 4 kg mass is attached to a spring with stiffness 48 N/m. The damping constant for the spring is 16\sqrt{3} N - sec/m. If the mas is pulled 30 cm to the right of equilibrium and given an initial rightward velocity of 3 m/sec, what is the maximum displacement from equilibrium that it will attain?
A 5​-kg mass is attached to a spring with stiffness 225 N/m. The damping constant for...
A 5​-kg mass is attached to a spring with stiffness 225 N/m. The damping constant for the system is 30√5 N-sec/m. If the mass is pulled 20 cm to the right of equilibrium and given an initial rightward velocity of 3 ​m/sec, what is the maximum displacement from equilibrium that it will​ attain? ​(Type an exact​ answer, using radicals as​ needed.)
A 4kg mass is attached to a spring with stiffness 80 N/m. The damping constant for...
A 4kg mass is attached to a spring with stiffness 80 N/m. The damping constant for the system is 16sqrt(5) N-sec/m. If the mass is pulled 10 cm to the right of equilibrium and given an initial rightward velocity of 4 m/sec, what is the maximum displacement from equilibrium that is will attain? The maximum displacement is [ ] meters. Type an exact answer, using radicals as needed
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant)...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant) of 3.58 N/m undergoes simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same?
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire...
A 1-kg mass is attached to a spring whose constant is 16 N/m and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 10 times the instantaneous velocity. Determine the equation if (A) The weight is released 60 cm below the equilibrium position. x(t)= ; (B) The weight is released 60 cm below the equilibrium position with an upward velocity of 17 m/s. x(t)= ; Using the equation from part b, (C)...
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire...
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true. (a) the mass is initially released from rest from a point 1 meter below the equilibrium position x(t) = m (b) the mass is initially released from a point 1 meter below the equilibrium...
A 2.30 kg frictionless block is attached to an ideal spring with force constant 314 N/m...
A 2.30 kg frictionless block is attached to an ideal spring with force constant 314 N/m . Initially the block has velocity -3.50 m/s and displacement 0.240 m . Find the amplitude of the motion.? Find the maximum acceleration of the block.? Find the maximum force the spring exerts on the block.?
Consider a block attached to one end of an ideal spring with spring constant k=10 N/m....
Consider a block attached to one end of an ideal spring with spring constant k=10 N/m. The other end of the spring is fixed to the ceiling. The block is moving vertically with simple harmonic oscillations. During the oscillations, the speed of the block reaches a maximum value of 10 m/s and the maximum acceleration of the block is 50 m/s2. What is the mass of the block? Express your answer in units of kg, but enter only the numeric...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT