Question

A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...

A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.08330.0833 m, its frequency is 4.754.75 Hz, and its wavelength is 1.771.77 m.

(a) What is the shortest transverse distance between a maximum and a minimum of the wave?

shortest transverse distance:

mm

(b) How much time is required for 57.357.3 cycles of the wave to pass a stationary observer?

time to pass a stationary observer:

ss

(c) Viewing the whole wave at any instant, how many cycles are there in a 30.330.3 m length of string?

30.3 m length of string=30.3 m length of string=

cycles

Homework Answers

Answer #1

The amplitude of a transversal wave is the maximum displacement of the oscillating constituent particle from its mean position.

A complete wave makes a complete circle and its perimeter can be calculate using the formula for circle.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0901 m, its frequency is 2.27 Hz, and its wavelength is 1.05 m. (a) What is the shortest transverse distance between a maximum and a minimum of the wave? shortest transverse distance: m (b) How much time is required for 57.9 cycles of the wave to pass a stationary observer? time to pass a stationary observer: s (c) Viewing the whole wave at any...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long, stretched string. The amplitude of this wave is 0.0867 m, its frequency is 3.41 Hz, and its wavelength is 1.69 m. What is the shortest transverse distance ? between a maximum and a minimum of the wave? How much time Δ? is required for 61.3 cycles of the wave to pass a stationary observer? Viewing the whole wave at any instant, how many cycles ? are there in a 32.7 m length...
A sinusoidal transverse wave travels along a long stretched string. The amplitude of this wave is...
A sinusoidal transverse wave travels along a long stretched string. The amplitude of this wave is 0.0817 m, its frequency is 3.61 Hz, and its wavelength is 1.11 m. (a) What is the transverse distance between a maximum and a minimum of the wave? (b) How much time is required for 56.9 cycles of the wave to pass a stationary observer? (c) Viewing the whole wave at any instant, how many cycles are there in a 34.1-m length of string?
A sinusoidal wave with wavelength 0.300 m travels along a string. The maximum transverse speed of...
A sinusoidal wave with wavelength 0.300 m travels along a string. The maximum transverse speed of a point on the string is 3.00 m/s and the maximum transverse acceleration is 8.50×104m/s2. 1) What is the propagation speed v of the wave?
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The...
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The acceleration of a small lump of mass on the string (a) varies sinusoidally in time in a direction perpendicular to the string, (b) varies sinusoidally in time in a direction parallel to the string, (c) is 10 m/s 2 , (d) is zero. (1B) In a periodic transverse wave on a string the value of the wave speed depends on (a) amplitude, (b) wavelength,...
10. [1pt] Consider a transverse harmonic wave travelling along a string. Enter true (T) or false...
10. [1pt] Consider a transverse harmonic wave travelling along a string. Enter true (T) or false (F) for the following statements. For example, if the first statement is true and the rest false, enter TFF. You have 4 tries. Increasing the amplitude of the wave increases its frequency. If a wave with a frequency of 10 Hz travels along a string with a mass per unit length of 40 g/m stretched to a tension of 100 N, its wavelength is...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30 mm Wavelength of the wave = 0.128 m Speed of the wave = 328 m/s a) Determine the time for a particle of the string to move through a total distance of 1.50 km. in s b) If the string is held under a tension of 982 N, determine its linear density. in g/m
A sinusoidal wave travels down a long string at a frequency of 800rad/s, a wavelength of...
A sinusoidal wave travels down a long string at a frequency of 800rad/s, a wavelength of .35m, an amplitude of 0.020m, and a mass/length is 0.0050 kg/m. a. What is the wave speed? b. What is the power of the wave? c. What is the energy per unit length? d. What is the tension in the string?
a sinusoidal transverse progressive wave of amplitude 50mm, wavelength 200mm, is travelling along the positive direction...
a sinusoidal transverse progressive wave of amplitude 50mm, wavelength 200mm, is travelling along the positive direction of the x- axis with a velocity of 4m/s. At a given instant there is a crest of the wave at the origin. Determine the displacement, velocity and direction of the motion of a particle 120mm to the right of the origin: a) at a given instant b) 1/50 s later
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? (b) What is the phase constant? (c) What is the maximum transverse speed of the...