Question

Design a simple Rankine cycle for your LNG plant. Your process should be scaled to produce...

Design a simple Rankine cycle for your LNG plant. Your process should be scaled to produce 50MW of net power. Minimum driving force=5-degree Fahrenheit; Isentropic efficiency=88%; Cooling water inlet temp.=60 degree Fahrenheit; Turbine inlet steam Temp=950 degree Fahrenheit. Assume you have saturated liquid leaving the condenser, no pressure drops in heat exchangers, and a minimum turbine outlet quality of 95%.

a. A process flow diagram with streams numbered and for steam and cooling water in lb./hr.

b. A table of the following stream properties at each location: Stream number, temperature (degree F), Pressure(psia), mass flow rate(lbm/hr).

c. supporting calculations.

d. Assuming your heat source is natural gas, estimate the daily cost for heat added (research cost online for natural gas by heat content), and the thermal efficiency of the plant

I don't have a photo of question as it was given by professor in the class.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler...
Consider a steam power plant which operates on the Rankine cycle. The pressures in the boiler and the condenser are 5000 kPa and 40 kPa, respectively. The temperatures at the inlet of the turbine and at the inlet of the pump are 500oC and 70oC, respectively. The isentropic efficiency of the turbine is 94 percent, pressure and pump losses are negligible. If the mass flow rate of steam is 10 kg/s. Determine (a) the heat transfer rate in the boiler,...
A steam power plant operates on the simple ideal rankine cycle between the pressure limits of...
A steam power plant operates on the simple ideal rankine cycle between the pressure limits of 50 kPa and 20 MPa, with a turbine inlet temperature of 600 Degree C. Disregarding the pump work, then: (a) Show the T-S diagram of the entire cycle. (b) Solve the total heat (kJ/kg) input for the cycle. (c) Solve the total heat (kJ/kg) reject by the cycle. (d) Solve the thermal efficiency of this plant.
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 6 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. How much error is caused in the thermal efficiency if the power required by the pump were completely neglected? Use steam tables. The error caused in the thermal efficiency if...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15...
In a power plant based on a simple Rankine cycle, steam enters the turbine at 15 MPa and 900°C. The condenser pressure is 5 kPa. The turbine operates adiabatically and has an isentropic efficiency of 85%, and the pump also operates adiabatically and has an isentropic efficiency of 80%. Determine the work required to pump the water to the boiler in kJ/kg of water flowing, and the enthalpy of the water leaving the pump.
An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser...
An 850-MW Rankine cycle operates with turbine inlet steam at 1200 psia and 1000°F and condenser pressure at 1 psia. There are three feedwater heaters placed optimally as follows: (a) the high-pressure heater is of the closed type with drains cascaded backward; (b) the intermediate-pressure heater is of the open type; (c) the low- pressure heater is of the closed type with drains pumped forward. Each of the turbine sections has the same polytropic efficiency of 90 percent. The pumps...
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75%. a) Draw and label the T-s diagram for this cycle b) Determine the cycle’s thermal efficiency c) Determine the mass flow rate of the steam in the boiler (kg/h) d) Determine...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and...
A steam power plant runs on a reheat Rankine cycle. Steam enters both the high and low pressure turbines at 500oC. The maximum and minimum pressures of the cycle are 10 MPa and 10 kPa, respectively. Steam leaves the condenser as a saturated liquid. The moisture content of the steam at the exit of the low-pressure turbine is 4% if the actual expansion process is adiabatic; 8.5% if the ideal expansion process is isentropic. The isentropic efficiencies of the high-pressure...
Sketch coordinated, labeled flow and T-s diagrams for the ideal Rankine cycle. Tabulate the temperatures, entropies,...
Sketch coordinated, labeled flow and T-s diagrams for the ideal Rankine cycle. Tabulate the temperatures, entropies, pressures, enthalpies, and quality or degree of superheat for each significant state shown on the diagram for a throttle at 1000 psia and 1000F and a condenser at 5 psia. Determine the net work, heat added, thermal efficiency, heat rate, and heat rejected in the condenser. If the power plant output is 100 megawatts and the condenser cooling-water temperature rise is 15 Rankine degrees,...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has...
Consider a combined gas-steam power cycle. The topping cycle is a simple Brayton cycle that has a pressure ratio of 7. Air enters the compressor at 15 ºC at a rate of 10 kg/s and the gas turbine at 950 ºC. The bottoming cycle is a reheat Rankine cycle between the pressure limits of 6 MPa and 10 kPa. Steam is heated in a heat exchanger at a rate of 1.15 kg/s by the exhaust gases leaving the gas turbine,...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to...
QUESTION 5 A steam power plant is designed to operate on a reheat Rankine cycle to produce 115 MW of a net power output. Due to metallurgical limitation, the high-pressure turbine is limited to operate at maximum pressure and temperature of 15 MPa and 650°C, respectively. The lowpressure turbine is to operate at maximum pressure and temperature of 3.5 MPa, and 500°C, respectively. Both high and low pressure turbines have maximum isentropic efficiency of 87 percent. The maximum reheat pressure...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT