Question

A uniform-density wheel of mass 8 kg and radius 0.42 m rotates on a low-friction axle....

A uniform-density wheel of mass 8 kg and radius 0.42 m rotates on a low-friction axle. Starting from rest, a string wrapped around the edge exerts a constant force of 14 N for 0.84 s. (a) What is the final angular speed?

(a) ωf = radians/s

(b) What was the average angular speed?

ωaverage = radians/s

(c) Through how big an angle did the wheel turn?

θ = radians

(d) How much string came off the wheel?

d = m

Homework Answers

Answer #1

a)The moment of inertia of the wheen will be:

I = 1/2 mr^2 = 0.5 x 8 x 0.42^2 = 0.7056 kg-m^2

Torque due to force is:

Tau = F x R = 14 x 0.42 = 5.88 N-m

Also, Tau = I alpha

I alpha = 5.88 => alpha = 5.88/0.7056 = 8.33 rad/s^2

omega = omega0 + alpha t = alpha t

omega = 8.33 x 0.84 = 7 rad/s

Hence, omega = 7 rad/s

b)distance covered is

theta = omega0 t + 1/2 alpha t^2

theta = 0.5 x 8.33 x 0.84 x 0.84 = 2.94 rad

omega(av) = 2.94/0.84 = 3.59 rad/s

Hence, omega(av) = 3.59 rad/s

c)calculated above

theta = 2.94 rad

d) d = 2.94 x 0.42 = 1.23 m

Hence, d = 1.23 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass m = 2.5 kg is attached to a string that is wrapped...
A block of mass m = 2.5 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 8.8 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.42 m/s A) Find the moment of inertia of the wheel if the block rises...
A 0.60 m radius wheel starting from rest rotates through an angle θ. If it is...
A 0.60 m radius wheel starting from rest rotates through an angle θ. If it is accelerating at a constant angular acceleration of 2.40 rad/s2, determine      (a) the angular velocity in rad/s of the wheel at the end of a 5.00 second interval.      (b) how many revolutions has the wheel rotated by the end of the 5.00 second interval.
A block of mass m = 1.8 kg is attached to a string that is wrapped...
A block of mass m = 1.8 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 7.6 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.30 m/s Find the moment of inertia of the wheel if the block rises to...
A cord is wrapped around the rim of a solid uniform wheel 0.220 mm in radius...
A cord is wrapped around the rim of a solid uniform wheel 0.220 mm in radius and of mass 7.60 kgkg. A steady horizontal pull of 40.0 NN to the right is exerted on the cord, pulling it off tangentially from the wheel. The wheel is mounted on frictionless bearings on a horizontal axle through its center. 1. Compute the angular acceleration of the wheel. 2. Compute the acceleration of the part of the cord that has already been pulled...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. What's the angular velocity after 4.0 s, in radians per second? (The moment of inertia of the cylinder is 1 half M R...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. (The moment of inertia of the cylinder is 1/2 MR^2.) 1. What's the force F, in Newtons? 2. What's the angular velocity after...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless horizontal axis. A massless cord is wrapped around the wheel and attached to a 2 kg object that slides on a frictionless surface inclined at an angle of 60 degrees with the horizontal. What is the acceleration of the block as well as the angular acceleration of the wheel about its axis of rotation? Answer: 6.93 m/s^2, 34.64 rad/s^2
A uniform disk with radius 0.440 m and mass 32.0 kg rotates in a horizontal plane...
A uniform disk with radius 0.440 m and mass 32.0 kg rotates in a horizontal plane on a frictionless vertical axle that passes through the center of the disk. The angle through which the disk has turned varies with time according to θ(t)=( 1.00 rad/s )t+( 8.10 rad/s2 )t2 . What is the resultant linear acceleration of a point on the rim of the disk at the instant when the disk has turned through 0.300 rev ? Express your answer...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm...
A solid uniform disk of mass M = 9.6 kg and radius R = 21 cm rests with its flat surface on a frictionless table (i.e., the axis of the cylinder is perpendicular to the table.) The diagram shows a top view. A string is wrapped around the rim of the disk and a constant force of F = 10.8 N is applied to the string. The string does not slip on the rim. 1) What is the acceleration of...
A 5.0 kg hollow cylinder of radius 0.28 m rotates freely about an axle that runs...
A 5.0 kg hollow cylinder of radius 0.28 m rotates freely about an axle that runs through its center and along its long axis. A cord is wrapped around the cylinder and is pulled straight from the cylinder with a steady tensile force of 50N. As the cord unwinds, the cylinder rotates, with no slippage between the cord and the cylinder. A) calculate the work done by the tensile force as the cylinder rotates through 1000 rad. B) if the...