Question

9. (a) A 1 m long string has a mass per unit length of 1.5×10−3 kg/m...

9. (a) A 1 m long string has a mass per unit length of 1.5×10−3 kg/m and is under a tension of 35 N. Find the first four harmonics of this string.

(b) A given pipe is 1.5 m long. If the speed of sound through this pipe is 343 m/s, what are the frequencies of the first three harmonics of the pipe when it is: (i) open at both ends, (ii) open at only one end.

10. A truck on a highway moves towards a police car sitting on the side of the highway. If the truck emits sound with a frequency of 1250 Hz as it moves, and an officer in the police car

detects a frequency of 1700 Hz for the sound, how fast is the truck moving?

Homework Answers

Answer #1

Dear students as per guide lines we have to solve only one question. Please like and support.

Upload remaining questions separately. Thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...
A string with a mass density of 3.6 ? 10-3 kg/m is under a tension of...
A string with a mass density of 3.6 ? 10-3 kg/m is under a tension of 370 N and is fixed at both ends. One of its resonance frequencies is 720 Hz. The next higher resonance frequency is 840 Hz. (a) What is the fundamental frequency of this string? ______Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 720 Hz 840 Hz (c) What is the length of the...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
A transverse wave propagates in a very long wire of mass per unit length 4*10^-3 kg/m...
A transverse wave propagates in a very long wire of mass per unit length 4*10^-3 kg/m and under tension of 360 N. An observer next to the wire notices 10 wave peaks (or crests) passing her in a time of 2 seconds moving to the left. a) If at t=0 and x=0 the displacement assumes its maximum value of 1mm, what is the explicit equation for the wave? b) Calculate the maximum longitudinal velocity for an infinitesimal segment of the...
A string with a mass per length of 2.00 gm/m is stretched with a force of...
A string with a mass per length of 2.00 gm/m is stretched with a force of 120 N between two points that are 0.400 m apart. The fundamental frequency of the stretched string is in tune with the frequency of the second mode of an organ pipe filled with air and open at both ends. The velocity of sound in air at 0°C is 331 m/s. If the temperature of the air decreases by 20°C, then what is the length...
A Piano that has a string of L = 2(m) long and a mass of m...
A Piano that has a string of L = 2(m) long and a mass of m = 0.2(g) over that length. The Piano is tightened and its tension is T = 20(N). Determine the speed of propagation for a wave along that string? Let the fundamental mode has a wavelength of λ = L 2 Determine the frequency of sound associated with that string?
A stretched string is 1.91 m long and has a mass of 20.9 g. When the...
A stretched string is 1.91 m long and has a mass of 20.9 g. When the string oscillates at 440 Hz , which is the frequency of the standard A pitch, transverse waves with a wavelength of 16.7 cm travel along the string. Calculate the tension ? in the string.
a) A 1 meter long guitar string of linear mass density 2g/m3 is put under tension...
a) A 1 meter long guitar string of linear mass density 2g/m3 is put under tension until it resonates with a fundamental frequency of 440 Hz. Determine the tension that produces this fundamental frequency. Also determine the other of the first four harmonic frequencies and draw diagrams illustrating what each of these oscillations looks like on the string. b) This string will produce sound waves in the air, determine the wavelength of the sound waves. c) Suppose you had two...
1.The human ear canal is about 2.3 cm long. If it is regarded as a tube...
1.The human ear canal is about 2.3 cm long. If it is regarded as a tube open at one end and closed at the eardrum, what is the fundamental frequency around which we would expect hearing to be most sensitive? ?kHz 2. An airplane traveling at half the speed of sound emits a sound of frequency 5.30 kHz. (a) At what frequency does a stationary listener hear the sound as the plane approaches? ? kHz (b) At what frequency does...