Question

A 10.0-g bullet is fired into, and embeds itself in, a 1.85-kg block attached to a...

A 10.0-g bullet is fired into, and embeds itself in, a 1.85-kg block attached to a spring with a force constant of 22.4 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block. (No Response) m

Homework Answers

Answer #1

if any inquires please comment.ig you satisfied with my answer please give me a like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.0392-kg bullet is fired horizontally into a 2.04-kg wooden block attached to one end of...
A 0.0392-kg bullet is fired horizontally into a 2.04-kg wooden block attached to one end of a massless, horizontal spring (k = 838 N/m). The other end of the spring is fixed in place, and the spring is unstrained initially. The block rests on a horizontal, frictionless surface. The bullet strikes the block perpendicularly and quickly comes to a halt within it. As a result of this completely inelastic collision, the spring is compressed along its axis and causes the...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...
A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a...
A rifle bullet with mass 8.00 g strikes and embeds itself in a block with a mass of 0.992 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. (See (Figure 1).) The impact compresses the spring 15.0 cm . Calibration of the spring shows that a force of 0.650 N is required to compress the spring 0.200 cm . Find the magnitude of the block's velocity just after impact (m/s) What was the initial...
A 8.00 g bullet traveling at 515 m/s embeds itself in a 1.57 kg wooden block...
A 8.00 g bullet traveling at 515 m/s embeds itself in a 1.57 kg wooden block at rest on a frictionless surface. The block is attached to a spring with k = 82.0 N/m. Part A) Find the period. Part B) Find the amplitude of the subsequent simple harmonic motion. Part C) Find the total energy of the bullet + block + spring system before the bullet enters the block. Part D) Find the total energy of the bullet +...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0200 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500...
A 0.0220 kg bullet moving horizontally at 400 m/s embeds itself into an initially stationary 0.500 kg block. (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? m/s (c) The bullet-embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? m
A 12.0g bullet is fired horizontally into a 650g block that is initially at rest on...
A 12.0g bullet is fired horizontally into a 650g block that is initially at rest on a frictionless horizontal surface. The initial velocity of the bullet is 450m/s. After the bullet is embedded into the block, the bullet-block system slides along the frictionless surface into a spring having spring constant k=470N/m a. What is the speed of the block after the bullet once it’s stuck in the block b. What was the work done on the bullet during the collision...
A 15 g bullet is fired at 610 m/s into a 4 kg wood block that...
A 15 g bullet is fired at 610 m/s into a 4 kg wood block that is at rest on the edge of 75 cm high table. The bullet embeds itself in the block and carries it off the table. a. What are forces acting on the block+bullet? (Or draw a free body diagram of forces acting on the block+bullet.) b. What was the momentum of the bullet before it hit the block? c. Write down the statement of conservation...
ANSWER ASAP PLEASEEEE A block with a mass of 0.85 kg rests on a horizontal, frictionless...
ANSWER ASAP PLEASEEEE A block with a mass of 0.85 kg rests on a horizontal, frictionless surface and is attached to an unstretched spring of length 20 cm. The spring constant of the spring is 9.5 x 103 N/m. The spring is attached to a wall at its other end. A 7.50-grams, 9-mm-diameter bullet is fired into the block at a speed of 350 m/s and embeds itself in the block. The system now starts oscillating. A. Treat the collision...
A bullet of mass m = 2.40×10-2 kg is fired along an incline and embeds itself...
A bullet of mass m = 2.40×10-2 kg is fired along an incline and embeds itself quickly into a block of wood of mass M = 1.35 kg. The block and bullet then slide up the incline, assumed frictionless, and rise to a height H = 1.35 m before stopping. Calculate the speed of the bullet just before it hits the wood.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT