Question

1--A proton is accelerated from rest by a potential difference of 350v. It then enters a...

1--A proton is accelerated from rest by a potential difference of 350v. It then enters a uniform magnetic field.the orbit radius is 25cm. Find (a) the protons,s speed, (b) the magnetic field strength (c) the period of the motion

Homework Answers

Answer #1

given,

potential difference = 350 V

electric potential energy of proton = charge * potential difference

electric potential energy of proton = 1.6 * 10^-19 * 350

electric potential energy of proton = 5.6 * 10^-17 J

by conservation of energy

initial energy = final energy

5.6 * 10^-17 = 0.5 * m * v^2

5.6 * 10^-17 = 0.5 * 1.672 * 10^-27 * v^2

proton's speed = 258815.853 m/s

radius = 0.25 m

radius = mv / qb

0.25 = 1.672 * 10^-27 * 258815.853 / (1.6 * 10^-19 * B)

magnetic field strength = 0.01082 T

period of motion = 2 * pi * m / qB

period of motion = 2 * pi * 1.672 * 10^-27 / (1.6 * 10^-19 * 0.01082)

period of motion = 0.0000061 sec

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
11.- A proton accelerated from rest by a potential difference acquires a speed of 5000 m...
11.- A proton accelerated from rest by a potential difference acquires a speed of 5000 m / s with which it enters a region in which there is a uniform magnetic field of 0.5 T perpendicular to the direction in which it moves the proton. a. Make a diagram of the forces and trajectory of the proton. b. Determine the radius of the circular trajectory that the proton follows within this region. c. Determine the time it takes to complete...
Electrons are accelerated from rest through a potential difference of 350 V and then enter a...
Electrons are accelerated from rest through a potential difference of 350 V and then enter a uniform magnetic field that is perpendicular to the velocity of the electrons. The electrons travel along a curved path with the radius of 7.5 cm, because of a magnetic force. a. What is the magnitude of the magnetic field? b. Estimate the period of this circular path? c. What is the angular speed of the electrons? d. If protons are used instead of electrons,...
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V...
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V = 30 kV. They enter a region containing a uniform magnetic field of strength B = 0.25 T. The particles move parallel to each other and perpendicular to B~ . (a) Compute the kinetic energy of each particle. Which is largest? Which is smallest? By what factor? (b) Compute the radius of each particle’s cyclotron orbit. (c) Critical Thinking. Is this setup effective for...
An electron is accelerated from rest by a potential difference of 350 V. It then enters...
An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate the number of revolutions completed by the electron in 2 seconds.
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV ....
A beam of protons is accelerated easterly from rest through a potential difference of 5.0kV . It enters a region where there exists an upward pointing uniform electric field. This field is created by two parallel plates separated by 15cm with a potential difference of 250 V across them. PART A What is the speed of the protons as they enter the electric field? Express your answer using two significant figures. PART B Find the magnitude of the magnetic field...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a uniform magnetic field traveling perpendicular to the field. a.What magnitude of field is needed to bend these protons in a circular arc of diameter 1.74m ? b.What magnetic field would be needed to produce a path with the same diameter if the particles were electrons having the same speed as the protons?
A charge q=-4.9nC and mass m=18.1picograms is accelerated from the rest through a potential difference of...
A charge q=-4.9nC and mass m=18.1picograms is accelerated from the rest through a potential difference of ΔV=173kV. It enters a region where a uniform B=66mT magnetic field is perpendicular to the velocity of the charge. Determine the radius of the path this charge will follow in the magnetic field( in meters).
A particle is acclerated from rest through a 4,500 V potential. It then enters a region...
A particle is acclerated from rest through a 4,500 V potential. It then enters a region of uniform magentic field where it traces out a circular orbit with radius 5.46cm. Find the charge-to-mass ratio of the particle. The strength of the magnetic field is 0.500T
A negatively charged particle of mass 6.11 x 10-23 kg is accelerated from rest through an...
A negatively charged particle of mass 6.11 x 10-23 kg is accelerated from rest through an electric potential difference of 3.5 x 103 V. After this, it enters a magnetic field of strength 0.80 T and undergoes uniform circular motion with a radius of 25 cm. Find the speed and charge of the particle 2.How many excess electrons does the particle have?
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic...
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic field at right angles. Calculate the value of the magnetic flux density necessary to move the proton in a circular path of radius 10 mm. [6] A piece of wire of cross-sectional area A and resistivity ρ is bent into a circular loop of radius r and placed in a magnetic field with its plane at right angles to the field. Determine the magnitude...