Question

In space, a 4.0kg metal ball moving 30m/s has a head-on collision with a stationary 1.0kg...

In space, a 4.0kg metal ball moving 30m/s has a head-on collision with a stationary 1.0kg second ball. After the collision, the second ball is traveling at 40m/s.

A) What is the velocity of the first ball?

B) Is this an elastic collision? (show. no credit without proof)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary...
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary ball and bounces back at a velocity or 4.0 m/s. If the collision is perfectly elastic, calculate (a) the mass of the other ball (b) the velocity of the other ball after the collision (c) the momentum of each ball before and after the collision (d) the kinetic energy of each ball before and after the collision
Ball A has a mass of 5kg and is initially moving at 3m/s, and ball B...
Ball A has a mass of 5kg and is initially moving at 3m/s, and ball B has a mass of 6kg and is traveling at -5m/s. Ball A then collides with ball B head on. After the collision, ball A is moving at -4m/s, what velocity is ball B moving at? Was this an elastic or inelastic collision?
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision...
A 0.060 kg tennis ball, moving with a speed of 7.10 m/s has a head-on collision with a 0.080 kg ball initially moving away from it in the same direction at a speed of 3.40 m/s. Assuming a perfectly elastic collision, What is the velocity of the tennis ball after the collision? (Take the initial direction of the balls as positive.) m/s What is the velocity of the 0.080 kg ball after the collision? m/s
A 0.060-kg tennis ball, moving with a speed of 5.40m/s , has a head-on collision with...
A 0.060-kg tennis ball, moving with a speed of 5.40m/s , has a head-on collision with a 0.090-kg ball initially moving in the same direction at a speed of 3.38m/s . Assume that the collision is perfectly elastic. Part A Determine the speed of the 0.060-kg ball after the collision. Part B Determine the direction of the velocity of the 0.060- ball after the collision. in the direction of the initial velocity in the direction opposite to the initial velocity...
A 0.060-kg tennis ball, moving with a speed of 5.12 m/s , has a head-on collision...
A 0.060-kg tennis ball, moving with a speed of 5.12 m/s , has a head-on collision with a 0.085-kg ball initially moving in the same direction at a speed of 3.40 m/s . Assume that the collision is perfectly elastic. A)  Determine the speed of the 0.060-kgkg ball after the collision. B) Determine the speed of the 0.085-kgkg ball after the collision. C) Determine the direction of the velocity of the 0.085-kgkg ball after the collision.
A 0.060-kg tennis ball, moving with a speed of5.62 m/s , has a head-on collision with...
A 0.060-kg tennis ball, moving with a speed of5.62 m/s , has a head-on collision with a0.090-kg ball initially moving in the same direction at a speed of 3.06 m/s . Assume that the collision is perfectly elastic. Determine the speed of the 0.060-kg ball after the collision. Determine the direction of the velocity of the 0.060-kg ball after the collision. Determine the speed of the 0.090-kg ball after the collision.Determine the direction of the velocity of the 0.090-kg ball...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After...
A billiard ball moving at 5.80 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.97 m/s, at an angle of 31.0° with respect to the original line of motion. (a) Find the velocity (magnitude and direction) of the second ball after collision. ______ m/s ° (with respect to the original line of motion, include the sign of your answer; consider the sign of the first ball's angle)(b) Was the collision inelastic...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly collides head-on with a 200 g ball sitting at rest. (a) Determine the velocity of the first ball just after the collision. (b) Determine the velocity of the second ball just after the collision. (c) Is kinetic energy conserved in this collision? How do you know? please show work on paper
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic...
A 1.0kg object initially moving with a velocity of 3.0m/s to the right makes an elastic head-on collision with a 1.5kg object initially moving to the left at 2.0m/s. a) What are the final velocities of the two objects after the collision? b) Using the given initial data for the two-object system as well as your results, show that the total kinetic energy is conserved for this elastic collision.
A 1.0kg block (a) moving at a speed of 4.0 meters per second runs head on...
A 1.0kg block (a) moving at a speed of 4.0 meters per second runs head on into a 0.5kg block (b) at rest in a perfectly elastic collision. What are the velocities of the blocks after the collision?