Question

A spring (k = 100 N/m), which can be stretched or compressed, is placed on a...

A spring (k = 100 N/m), which can be stretched or compressed, is placed on a frictionless table. A 5.00-kg mass is attached to one end of the spring, and the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x = 4.0 cm and releases it from rest. The mass oscillates in simple harmonic motion. (a) Determine the function x(t). (b) Find the magnitudes of maximum velocity and maximum acceleration. (c) Find the total energy of the oscillator. (d) Find the position, velocity, and acceleration of the mass at time t = 3.00 s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spring (k = 100 N/m), which can be stretched or compressed, is placed on a...
A spring (k = 100 N/m), which can be stretched or compressed, is placed on a frictionless table. A 5.00-kg mass is attached to one end of the spring, and the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x = 4.0 cm and releases it from rest. The mass oscillates in simple harmonic motion. (a) Determine the function x(t). (b) Find the magnitudes of maximum velocity...
A mass is placed on a frictionless, horizontal table. A spring (k = 100 N/m), which...
A mass is placed on a frictionless, horizontal table. A spring (k = 100 N/m), which can be stretched or compressed, is placed on the table. A 7.00 kg mass is attached to one end of the spring, the other end is anchored to the wall. The equilibrium position is marked at zero. A student moves the mass out to x = 5.0 cm and releases it from rest at t = 0. The mass oscillates in SHM. Find the...
#1: A mass of 6 kg is attached to a spring with k = 1500 N/m....
#1: A mass of 6 kg is attached to a spring with k = 1500 N/m. It is stretched a distance of 0.5 m and is released so that it oscillates in simple harmonic motion. A) What is the frequency? B) What is the energy of the oscillator? C) What is the maximum velocity for the oscillator? #2:  When at x = 0.3 m a simple harmonic oscillator (k = 2000 N/m and m = 2 kg) has a velocity of...
13.5 A spring with a spring constant of 450 N/m is stretched 20 cm from the...
13.5 A spring with a spring constant of 450 N/m is stretched 20 cm from the equilibrium position. a) What is the magnitude of the spring force at x = 20 cm? b) If a 5 kg mass is attached to the spring, what will the maximum acceleration be if the spring is released from the x = 20 cm stretched position? c) Will the acceleration be the same as the spring passes the x = 10 cm position? If...
A 3.5kg mass is attached to an ideal spring (k = 100.0N/m) and oscillates on a...
A 3.5kg mass is attached to an ideal spring (k = 100.0N/m) and oscillates on a horizontal frictionless track. At t = 0.00s, the mass is released from rest at x = 15.0cm. a.) Determine the frequency (f) of the oscillations. b.) Determine the maximum speed of the mass. At what point in the motion does the maximum speed occur? c.) What is the maximum acceleration of this mass? At what point in the motion does the maximum acceleration occur?...
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m...
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the mass. cm/s (b) Determine the speed of the mass when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the mass when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the speed...
Learning Goal: To understand the application of the general harmonic equation to finding the acceleration of...
Learning Goal: To understand the application of the general harmonic equation to finding the acceleration of a spring oscillator as a function of time. One end of a spring with spring constant k is attached to the wall. The other end is attached to a block of mass m. The block rests on a frictionless horizontal surface. The equilibrium position of the left side of the block is defined to be x=0. The length of the relaxed spring is L....
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on...
A 100 g block attached to a spring with spring constant 2.7 N/m oscillates horizontally on a frictionless table. Its velocity is 22 cm/s when x0 = -5.6 cm . What is the amplitude of oscillation? What is the block's maximum acceleration? What is the block's position when the acceleration is maximum? What is the speed of the block when x1 = 2.9 cm ?
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A horizontal spring with a spring constant of 26.4N/m lies on a frictionless surface, and is...
A horizontal spring with a spring constant of 26.4N/m lies on a frictionless surface, and is attached at one end to the wall. A 150g apple is permanently attached to the other end of the spring. The spring is stretched by 3.75cm, and given initial velocity of 23.0cm/s toward equilibrium as it is released. Assume the position equation motion; x=A cos (omega t + phi) 1. Find the phase shift for the equation of motion in radians. 2. Find the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT