Question

A bucket with mass m = 1.0 kg is suspended over a well by a winch...

A bucket with mass m = 1.0 kg is suspended over a well by a winch and rope. The winch consists of a solid cylinder with mass M = 7.0 kg and radius R = 0.10 m about which the rope is wrapped. The winch has a finite frictional force inside. A handle is attached to one end in order to rotate the cylinder. Now suppose that the winch handle breaks off, allowing the bucket to fall to the water as the rope unwinds from the cylinder. Assume that, as the bucket falls, friction does -10 J of work on the system. Find the final speed of the bucket just before it hits the water. The water level is at a depth h = 6.0 m below the bucket.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bucket with mass m = 1.0 kg is suspended over a well by a winch...
A bucket with mass m = 1.0 kg is suspended over a well by a winch and rope. The winch consists of a solid cylinder with mass 4.0 kg and radius R = 0.10 m about which the rope is wrapped. A handle is attached to one end in order to rotate the cylinder. For the purposes of this example, we are going to ignore any frictional forces in the winch. Now suppose that the winch handle breaks off, allowing...
A bucket hands over a well by a rope. The rope is wrapped around a winch...
A bucket hands over a well by a rope. The rope is wrapped around a winch (a wheel) which can be treated as a disk with a mass of 5.72 kg and a radius of 0.225m. The bucket itself weights 2.15kg and starts 11.6m from the surface of the water. The rope does not slip on the winch, and we can neglect any friction and air resistance. b. Use Newton's second law to find the linear acceleration of the bucket...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.350 m with mass 12.4 kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2 m to the water. You can ignore the weight of the rope. Part A What is the tension in the rope while...
A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass,...
A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.270m with mass 11.2kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2m to the water. You can ignore the weight of the rope. A) What is the tension in the rope while the bucket is falling? B)...
A 1200 kg car is being raised over water by a winch. At the moment the...
A 1200 kg car is being raised over water by a winch. At the moment the car is 5.0 m above the water when the gearbox breaks. During the car's fall, there is no slipping between the massless rope, the pulley wheel, and the winch drum. The radius of the pulley is 30 cm and its mass is 15 kg. The radius of the drum is 80 cm and its mass is 500 kg. Approximating the pulley as a hoop...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius 0.19 m. The cylinder rotates with negligible friction about a stationary horizontal axis. We attach the free end of the cable to a block of mass 48 kg, and release the block from rest at a distance 3.9 m above the floor. As the block falls, the cable unwinds without stretching or slipping. Find the angular speed of the cylinder (in radians/s) the moment...
A block of mass = M (measured in kg) is supported by a massless string wound...
A block of mass = M (measured in kg) is supported by a massless string wound on a uniform solid cylinder, which has a mass = 3M . The radius of the cylinder = R (in units of meters) and the axle about which the cylinder turns has no friction. The system, shown in the accompanying diagram, is released from rest and the falling mass unwinds the rope without any slipping of the rope as the mass falls. (a) How...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached to a frictionless horizontal axle. A long (light weight) cable is wrapped around the cylinder. Attached to the end of the cable is a 1.50 kg mass. The system is initially stationary. The hanging mass is then released. The mass pulls on the cable as it falls and this causes the cylinder to rotate. a) What is the velocity of the hanging mass after...
An object with a mass of m = 5.5 kg is attached to the free end...
An object with a mass of m = 5.5 kg is attached to the free end of a light string wrapped around a reel of radius R = 0.260 m and mass of M = 3.00 kg. The reel is a solid disk, free to rotate in a vertical plane about the horizontal axis passing through its center as shown in the figure below. The suspended object is released from rest 6.40 m above the floor. (a) Determine the tension...
We wrap a light, flexible cable around a solid cylinder with mass 0.95 kg and radius...
We wrap a light, flexible cable around a solid cylinder with mass 0.95 kg and radius 0.23 m . The cylinder rotates with negligible friction about a stationary horizontal axis. We tie the free end of the cable to a block of mass 1.84 kg and release the object with no initial velocity at a distance 1.58 m above the floor. As the block falls, the cable unwinds without stretching or slipping, turning the cylinder. Suppose the falling mass is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT