Question

4. A skier starts at the top of a hill with height H, skies down and...

4. A skier starts at the top of a hill with height H, skies down and then climbs a smaller hill. The smaller hill is shaped like a large snowball with a radius R. As the skier skies straight down the side, at what point does she los contact with the snowball and fly off at a tangent: at what angle α does a radial line from the center of the snowball to the skier make with the vertical? Ignore friction.

Please draw diagram and explain

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A skier is skiing down a hill on friction-less skies when he realizes there is a...
A skier is skiing down a hill on friction-less skies when he realizes there is a cliff in front of him. He skies right over the edge and lands on the valley floor. His motion has two parts: on the hill he started at rest and accelerated throughout his trip. Once he comes to the cliff edge, he goes over the side and is experiencing projectile motion through the air, until he lands. Assume the hill makes a 45 degree...
A skier stands on the top of a giant frictionless snowball with radius R:She is initially...
A skier stands on the top of a giant frictionless snowball with radius R:She is initially at rest, but a slight perturbation starts her sliding off to the side. (a) At what angle with respect to the vertical will she lose contact with the snow? (b) What is the velocity at this point if R = 50 m, and how fast will she be traveling when she hits the ground? The snowball is fixed in place, and doesn't roll.
A 90 kg skier starts from the top of a hill with a 19 deg slope....
A 90 kg skier starts from the top of a hill with a 19 deg slope. The skier reaches the bottom of the slope 11 s later. a) If there is a constant friction force of 70 N which resists his motion, how long must be the incline of the hill? b) Draw a force diagram for the skier with labels and magnitudes. c) What is the coefficient of kinetic friction between the block and ramp? d) How much work...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill of height H. It rolls down the hill without slipping. Find an expression for the speed of the ball's center of mass once it reaches the bottom of the hill.
1. A 85.0-kg speed skier has finished a long down hill race and reaches a final...
1. A 85.0-kg speed skier has finished a long down hill race and reaches a final slope (fig. 1 below) designed to slow her down. At the bottom of this slope her speed is 29.0 m/s. She slides up the inclined plane of snow on her skis and at a certain vertical height h has speed 1.95 m/s. The force of friction between her skis and the snow does work of magnitude 3995.0 J . (Ignore air friction.) (a) What...
1.) Starting from rest, a basketball rolls from the top to the bottom of a hill,...
1.) Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 5.3 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom? 2.) A bowling ball encounters a 0.760-m vertical rise on...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...