Question

A 1200-kg car initially at rest undergoes a constant acceleration for 8.8 s reaching a speed...

A 1200-kg car initially at rest undergoes a constant acceleration for 8.8 s reaching a speed of10 m/s. It then collides with a stationary car that has a perfectly elastic spring bumper.

(a) What is the final kinetic energy of the two-car system?

(b) If the initially stationary car has inertia equal to 2000 kg, what are the final velocities? (Not speeds)

(c) What assumptions/conditions allowed you to use the equations to solve the problems?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2000-kg car travelling at 50 m/s collides with an object of (your student number)-kg travelling...
A 2000-kg car travelling at 50 m/s collides with an object of (your student number)-kg travelling at 12 m/s inan opposite direction. (a) Find change in kinetic energy if both stick together and if collision is absolutely elastic. (b)Show final velocities in both cases for both objects. (c) What percentage of the original kinetic energy is this?
In an elastic collision, a 350 kg bumper car collides directly from behind with a second,...
In an elastic collision, a 350 kg bumper car collides directly from behind with a second, identical bumper car that is traveling in the same direction. The initial speed of the leading bumper car is 4.40 m/s and that of the trailing car is 6.50 m/s. Assuming that the mass of the drivers is much, much less than that of the bumper cars, what are their final speeds (in m/s)? leading bumper car _? m/s trailing bumper car _? m/s
In an elastic collision, a 480-kg bumper car collides directly from behind with a second, identical...
In an elastic collision, a 480-kg bumper car collides directly from behind with a second, identical bumper car that is traveling in the same direction. The initial speed of the leading bumper car is 4.5 m/s and that of the trailing car is 7.2 m/s. Hint Assuming that the mass of the drivers is much, much less than that of the bumper cars, what are their final speeds? The speed of the leading bumper car after collision is  m/s, and the...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
1500-kg car moving at 16.00 m/s suddenly collides with a stationary car of mass 1000 kg....
1500-kg car moving at 16.00 m/s suddenly collides with a stationary car of mass 1000 kg. Time of collision is .02 secs e. What is the average force acting on the stationary car by the moving car during the collision? f. What is the total kinetic energy before the collision? g. What is the total kinetic energy after the collision? h. What is change in momentum? i. What happens to the lost kinetic energy? Explain clearly j. Is this an...
Mass ( m 1 = 1 kg ) initially moving at a speed of 10 m/s...
Mass ( m 1 = 1 kg ) initially moving at a speed of 10 m/s , collides in a perfectly elastic collision with ( m 2 = 3 kg ) initially at rest. After the collision m 2 moves with a speed of 4 m/s at an angle of while m 1 moves with a final speed v f 1 at an angle Determine the final speed vf1 and the angles θ, α.
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2...
A car initially traveling at 29.2 m/s undergoes a constant negative acceleration of magnitude 2.00 m/s2 after its brakes are applied (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.300 m? (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2...
A car initially traveling at 25.7 m/s undergoes a constant negative acceleration of magnitude 1.80 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.320 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? rad/s
A car initially traveling at 25.9 m/s undergoes a constant negative acceleration of magnitude 1.40 m/s2...
A car initially traveling at 25.9 m/s undergoes a constant negative acceleration of magnitude 1.40 m/s2 after its brakes are applied. (a) How many revolutions does each tire make before the car comes to a stop, assuming the car does not skid and the tires have radii of 0.330 m? rev (b) What is the angular speed of the wheels when the car has traveled half the total distance? ______rad/s