Question

A book slides with initial speed 1.60 m/s across a horizontal table. If it slows to...

A book slides with initial speed 1.60 m/s across a horizontal table. If it slows to a stop in 0.60 m, what is the coefficient of kinetic friction with the table? Ignore air resistance and assume the acceleration due to gravity is g= 9.8 m/s2.

Homework Answers

Answer #1

Please give a positive rating by clicking on the thumbs up ? button if you get benefited from this answer? have a good day ahead. Thank you?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A physics book slides off a horizontal table top with a speed of 1.15 m/s. It...
A physics book slides off a horizontal table top with a speed of 1.15 m/s. It strikes the floor in 0.500 s. Ignore air resistance. (Assume the book's horizontal direction and upward are positive.) (a) Find the height of the table top above the floor. m (b) Find the horizontal distance from the edge of the table to the point where the book strikes the floor. m (c) Find the horizontal and vertical components of the book's velocity just before...
A physics book slides off a horizontal tabletop with a speed of 1.10 m/s. It strikes...
A physics book slides off a horizontal tabletop with a speed of 1.10 m/s. It strikes the floor in 0.350 s. Ignore air resistance. Find (a) the height of the tabletop above the floor, (b) the horizontal distance from the edge of the table to the point where the book strikes the floor, and (c) the horizontal and vertical components of the book’s velocity, and the magnitude and direction of its velocity, just before the book reaches the floor.
A 1 kg. box is given a push so that it slides across the floor. How...
A 1 kg. box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.31 and the push imparts at initial speed of 3.1 m/s? Calculate to one decimal. Use g = 9.8 m/s2
A 1 kg. box is given a push so that it slides across the floor. How...
A 1 kg. box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.19 and the push imparts at initial speed of 5.4 m/s? Calculate to one decimal. Use g = 9.8 m/s2
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road...
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road skids to a stop in 50 m. (Note: When stopping without skidding and using conventional brakes, 100 percent of the kinetic energy is dissipated by friction within the brakes. With regenerative braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy is dissipated.) (a) Find the energy dissipated by friction. 718750 Incorrect: Your answer is incorrect. kJ (b) Find...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at...
An 8.70-kg block slides with an initial speed of 1.80 m/s down a ramp inclined at an angle of 25.3 ∘ with the horizontal. The coefficient of kinetic friction between the block and the ramp is 0.87. Use energy conservation to find the distance the block slides before coming to rest.
A stone is thrown with an initial speed of 12 m/s at an angle of 53°...
A stone is thrown with an initial speed of 12 m/s at an angle of 53° above the horizontal from the top of a 35 m building. If g = 9.8 m/s2 and air resistance is negligible, then what is the speed of the rock as it hits the ground? Question 4 options: 28 m/s 29 m/s 30 m/s 31 m/s
A 0.85 kg block slides 3.3 m across a frictionless, horizontal table at 2.2 m/s, moving...
A 0.85 kg block slides 3.3 m across a frictionless, horizontal table at 2.2 m/s, moving left. Once the block hits the spring, it sticks, compressing the spring 70 cm before the block stops and reverses direction. The block then continues to bounce back and forth, still attached to the spring. The spring constant is 8.4 N/m. Ignore air resistance. (b) [3 points] Plot the velocity of the block as a function of time, with t = 0 when the...
Moving at an initial speed of vi = 2.00 m/s, Jimmy slides from a height of...
Moving at an initial speed of vi = 2.00 m/s, Jimmy slides from a height of h = 5.00 m down a straight playground slide, which is inclined at θ = 55° above the horizontal. At the bottom of the slide, Jimmy is moving at vf = 9.00 m/s. By determining the change in mechanical energy, calculate the coefficient of kinetic friction between Jimmy and the slide.
A student of mass 65.4 kg, starting at rest, slides down a slide 18.2 m long,...
A student of mass 65.4 kg, starting at rest, slides down a slide 18.2 m long, tilted at an angle of 32.1° with respect to the horizontal. If the coefficient of kinetic friction between the student and the slide is 0.133, find the force of kinetic friction, the acceleration, and the speed she is traveling when she reaches the bottom of the slide. (Enter the magnitudes.) HINT (a) the force of kinetic friction (in N) N (b) the acceleration (in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT