Question

A cockroach of mass m lies on the rim of a uniform disk of mass 7.00m...

A cockroach of mass m lies on the rim of a uniform disk of mass 7.00m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.230 rad/s. Then the cockroach walks half way to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/K0 of the new kinetic energy of the system to its initial kinetic energy? (c) What accounts for the change in the kinetic energy? (Select all that apply.)

Homework Answers

Answer #1

Mass of cockoach = m
Mass of disk = 7.0 m
w = 0.230 rad/s
Let the radius of disk be r.
Moment of inertia of disk, = 1/2 * (7m)*r^2
Initial Moment of inertia of cockoach, = m*r^2
Final Moment of inertia of cockoach, = m*(r/2)^2 = 1/4 * m*r^2

Using Conservation of angular momentum,
Initial Angular momentum = Final Anagular momentum
(1/2 * (7m)*r^2 + m*r^2) * wi = (1/2 * (7m)*r^2 + 1/4 * m*r^2) * wf
(1/2 * 7 + 1) * 0.230 = (1/2 *7 + 1/4 ) * wf
wf = 0.276 rad/s
Angular velocity of the cockroach-disk system, wf = 0.276 rad/s


(b)
Initial Kinetic Energy of the system, Ko = 1/2* Ii * wi^2
Final Kinetic Energy of the system, K = 1/2* If * wf^2

K/Ko = 1/2* If * wf^2 / 1/2* Ii * wi^2
K/Ko = ((1/2 *7 + 1/4 ) * 0.276^2 )/ ((1/2 * 7 + 1) * 0.230^2 )
K/Ko = 1.2

(c)
As cockroach moves towards the center of the disc, it works against centrifugal force and does positive work against the disc !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00m...
A cockroach of mass m lies on the rim of a uniform disk of mass 7.00m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.270 rad/s. Then the cockroach walks half way to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? rad/s (b) What is the ratio K/K0 of the new kinetic energy of the system to its...
A cockroach of mass m lies on the rim of a uniform disk of mass 8.00m...
A cockroach of mass m lies on the rim of a uniform disk of mass 8.00m that can rotate freely about its center like a merry-go-round. Initially, the cockroach and disk rotate together with an angular velocity of 0.230 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? ________________ rad/s (b) What is the ratio K/K0 of the new kinetic energy of the system to its...
A cockroach of mass m lies on the rim of a uniform disk of mass 3.00...
A cockroach of mass m lies on the rim of a uniform disk of mass 3.00 m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.466 rad/s. Then the cockroach walks halfway to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? (b) What is the ratio K/K0 of the new kinetic energy of the system to its initial...
A cockroach of mass m lies on the rim of a uniform disk of mass 4m...
A cockroach of mass m lies on the rim of a uniform disk of mass 4m that can freely rotate about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.260 rad/s. Then the cockroach walks halfway to the center of the disk. a. What is the new angular velocity of the cockroach-disk system? b. What is the ratio K/K0 of the new kinetic energy of the system to its initial kinetic...
A cockroach of mass m lies on the rim of a uniform disk of mass 6.00m...
A cockroach of mass m lies on the rim of a uniform disk of mass 6.00m that can rotate freely about its center like a merry-go-round. Initially the cockroach and disk rotate together with an angular velocity of 0.210 rad/s. Then the cockroach walks half way to the center of the disk. (a) What then is the angular velocity of the cockroach-disk system? _____________rad/s (b) What is the ratio K/K0 of the new kinetic energy of the system to its...
A uniform disk of radius 0.529 m and unknown mass is constrained to rotate about a...
A uniform disk of radius 0.529 m and unknown mass is constrained to rotate about a perpendicular axis through its center. A ring with same mass as the disk\'s is attached around the disk\'s rim. A tangential force of 0.223 N applied at the rim causes an angular acceleration of 0.103 rad/s2. Find the mass of the disk.
A person with mass mp = 70 kg stands on a spinning platform disk with a...
A person with mass mp = 70 kg stands on a spinning platform disk with a radius of R = 2.04 m and mass md = 186 kg. The disk is initially spinning at ω = 2 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.68 m from the center). What is the total moment of inertia of the system about the center of the disk when the person stands on the...
A person with mass mp = 79 kg stands on a spinning platform disk with a...
A person with mass mp = 79 kg stands on a spinning platform disk with a radius of R = 1.83 m and mass md = 183 kg. The disk is initially spinning at ω = 1.8 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.61 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A person with mass mp = 75 kg stands on a spinning platform disk with a...
A person with mass mp = 75 kg stands on a spinning platform disk with a radius of R = 1.65 m and mass md = 187 kg. The disk is initially spinning at ω = 1.4 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.55 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A person with mass mp = 77 kg stands on a spinning platform disk with a...
A person with mass mp = 77 kg stands on a spinning platform disk with a radius of R = 2.22 m and mass md = 195 kg. The disk is initially spinning at ω = 1.9 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.74 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...