Question

Consider a 0.04kg mass on a level, frictionless surface and connected to a 180N/m spring constant....

Consider a 0.04kg mass on a level, frictionless surface and connected to a 180N/m spring constant. Pull the mass to x = 0.1 meter and release. Determine the KE when x = 0.4 meter

Homework Answers

Answer #1

As the maximum displacemet of the mass is 0.1m so we cannot determine kinetic energy at x = 0.4m as it is more than the maximum displacemet. So assuming x = 0.04m.

Let,

a = 0.1 m is the amplitude of oscillation

K = 180 N/m is the spring constant.

x = 0.04 m is the displacement

Kinetic energy of the oscillating mass = change in potential energy of the oscillating mass

Kinetic energy = (1/2)Ka2 - (1/2)Kx2

Kinetic energy = (1/2)×180×(0.1)2 - (1/2)×180×(0.04)2

Kinetic energy = 0.9 - 0.144

Kinetic energy = 0.756 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m...
A 0.43 kg object connected to a light spring with a spring constant of 18.4 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the mass. cm/s (b) Determine the speed of the mass when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the mass when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the speed...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
1. A 0.12kg body is connected to a wall by a spring with a spring constant...
1. A 0.12kg body is connected to a wall by a spring with a spring constant of 570 N/m. The body experiences simple oscillatory motion when pulled from its equilibrium rightward by 0.080m and then released from rest. what is the displacement of the block after 0.20s. 2. An object connected to a spring (with a spring constant of 29.8 N/m) is displaced 0.232 meter from equilibrium on a frictionless horizontal tabletop; upon release, the object experiences simple harmonic motion...
The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a...
The mass m = 5.5 kg resting on a frictionless horizontal table is connected to a horizontal spring with stiffness constant k = 200 N/m . The mass is pulled a distance to the right so that the spring is stretched a distance x0 = 1.9 m initially, and then the mass is released from rest. B: Determine the kinetic energy when x=1/2 x0 C: Determine the maximum kinetic energy. D: Determine the maximum speed. E: At what position it...
A 0.34 kg object connected to a light spring with a force constant of 22.2 N/m...
A 0.34 kg object connected to a light spring with a force constant of 22.2 N/m oscillates on a frictionless horizontal surface. If the spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. cm/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. cm/s (c) Determine the speed of the object when the spring is stretched 1.5 cm. cm/s (d) For what value of x does the...
A 0.33 kg object connected to a light spring with a force constant of 18.2 N/m...
A 0.33 kg object connected to a light spring with a force constant of 18.2 N/m oscillates on a frictionless horizontal surface. If the spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. ______ cm/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. __________cm/s (c) Determine the speed of the object when the spring is stretched 1.5 cm. ________cm/s (d) For what value of x does...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other end of the spring is fixed to a wall. The spring constant is 6.00 N/m. The mass is moved to the right, stretching the spring by 12.0 cm, and then released from rest. a) Find the frequency of the motion in Hz. b) Find the force when x = 6.00 cm. c) Find the time when x = 6.00 cm. d) Find the velocity...
A horizontal spring with spring constant 2 N/m has one end connected to a wall while...
A horizontal spring with spring constant 2 N/m has one end connected to a wall while the other end is connected to a block resting on a frictionless surface. The mass of the block is 0.5 kg. The block is pulled 10 cm away from its equilibrium position and released. (a) Calculate the frequency of the resulting simple harmonic motion. (b) Calculate the maximum velocity of the block When the mass is 3 cm away from equilibrium it then strikes...
A 0.51-kg object connected to a light spring with a force constant of 20.6 N/m oscillates...
A 0.51-kg object connected to a light spring with a force constant of 20.6 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. m/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. m/s (c) Determine the speed of the object as it passes the point 1.5 cm from the equilibrium position. m/s (d) For what value of x...
A 0.55-kg object connected to a light spring with a force constant of 19.8 N/m oscillates...
A 0.55-kg object connected to a light spring with a force constant of 19.8 N/m oscillates on a frictionless horizontal surface. The spring is compressed 4.0 cm and released from rest. (a) Determine the maximum speed of the object. m/s (b) Determine the speed of the object when the spring is compressed 1.5 cm. m/s (c) Determine the speed of the object as it passes the point 1.5 cm from the equilibrium position. m/s (d) For what value of x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT