Question

Given a positively charged rod and two spheres on insulating stands, describe a procedure that would...

Given a positively charged rod and two spheres on insulating stands, describe a procedure that would give

a) an equal positive charge to the two spheres

b) a positive charge to one sphere and a negative charge of the same magnitude to the other sphere.

c) an equal negative charge to the two spheres.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two small insulating spheres with radius 6.00×10−2 mm are separated by a large center-to-center distance of...
Two small insulating spheres with radius 6.00×10−2 mm are separated by a large center-to-center distance of 0.460 mm . One sphere is negatively charged, with net charge -1.00 μCμC , and the other sphere is positively charged, with net charge 3.30 μCμC . The charge is uniformly distributed within the volume of each sphere. a) What is the magnitude EE of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0ϵ0= 8.85×10−12 C2/(N⋅m2)C2/(N⋅m2) .
Two identical conducting spheres on insulating stands together have 6.00 X 1013 excess protons. 4.00 X...
Two identical conducting spheres on insulating stands together have 6.00 X 1013 excess protons. 4.00 X 1013 electrons are transferred when they come into contact with each other and then they are separated by 5.00 meters. a) find the original charge of each sphere b) determine the electostatic force on each sphere after they are brought in contact. c) What distance between the spheres before they are brought into contact would produce the same force? d) What mass would the...
A positively charged rod is brought near a metallic bar placed on an insulating stand. The...
A positively charged rod is brought near a metallic bar placed on an insulating stand. The rod is not touching the bar. Draw the charges on the metallic bar if any. An uncharged pith ball is placed near the other end of the bar. Describe the interaction between the pith ball and the bar.
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0750 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0720 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0705 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0675 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.115 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2 . Using this information, find the initial charge on each sphere,...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.4 cm31.4...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 31.4 cm31.4 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0615 NF1=0.0615 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.115 NF2=0.115 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2k=1/(4πϵ0)=8.99×109 N⋅m2/C2 . Using this information, find the initial...
Two small, metallic spheres are charged, with charges of -2uc and 4uc respectively. The spheres are...
Two small, metallic spheres are charged, with charges of -2uc and 4uc respectively. The spheres are touched together, resulting in a transfer of charges, and then placed  apart. To three significant figures, determine: a) the final charge on each sphere. (1 pt) b) the number of charges that are transferred from one sphere to the other. (1 pt) c) the magnitude of the force that acts on one of the spheres after they are touched and separated. (1 pt)
Two 2.0-cm-diameter insulating spheres have a 6.10 cm space between them. One sphere is charged to...
Two 2.0-cm-diameter insulating spheres have a 6.10 cm space between them. One sphere is charged to + 22.0 nC , the other to - 37.0 nC . What is the electric field strength at the midpoint between the two spheres?