Question

(25%) Problem 6: A mass m = 0.85 kg hangs at the end of a vertical...

(25%) Problem 6: A mass m = 0.85 kg hangs at the end of a vertical spring whose top end is fixed to the ceiling. The spring has spring constant k = 85 N/m and negligible mass. The mass undergoes simple harmonic motion when placed in vertical motion, with its position given as a function of time by y(t) = A cos(ωt – φ), with the positive y-axis pointing upward. At time t = 0 the mass is observed to be at a distance d = 0.35 m below its equilibrium height with an upward speed of v0 = 3 m/s.

1) Find the angular frequency of the oscillation, in radians per second.

2) Find the value of φ, in radians.

3) Calculate the value of A, in meters.

4) What is the mass’s velocity along the y-axis, in meters per second, at time t1 = 0.15 s?

5) What is the magnitude of the mass’s maximum acceleration, in meters per second squared?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass m = 1.4 kg hangs at the end of a vertical spring whose top...
A mass m = 1.4 kg hangs at the end of a vertical spring whose top end is fixed to the ceiling. The spring has spring constant k = 75 N/m and negligible mass. At time t = 0 the mass is released from rest at a distance d = 0.35 m below its equilibrium height and undergoes simple harmonic motion with its position given as a function of time by y(t) = A cos(ωt – φ). The positive y-axis...
A mass of 0.3 kg hangs motionless from a vertical spring whose length is 0.83 m...
A mass of 0.3 kg hangs motionless from a vertical spring whose length is 0.83 m and whose unstretched length is 0.54 m. Next the mass is pulled down to where the spring has a length of 1.03 m and given an initial speed upwards of 1.4 m/s. What is the maximum length of the spring during the motion that follows?
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. What is the spring constant of the spring? 2) What is the oscillation frequency? After t = 0.32 s what is the speed of the block? What...
A vertical spring has a length of 0.25 m when a 0.275 kg mass hangs from...
A vertical spring has a length of 0.25 m when a 0.275 kg mass hangs from it, and a length of 0.775 m when a 1.8 kg mass hangs from it. What is the force constant of the spring, in newtons per meter? What is the unloaded length of the spring, in centimeters?
A block with mass m =7.5 kg is hung from a vertical spring. When the mass...
A block with mass m =7.5 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.25 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.1 m/s. The block oscillates on the spring without friction. After t = 0.3 s what is the speed of the block? What is the magnitude of the maximum acceleration of the block? At t = 0.3...
An object of mass 2 kg hangs from a spring of negligible mass. The sping is...
An object of mass 2 kg hangs from a spring of negligible mass. The sping is extended by 2.5 cm when the object is attached. The top end of spring is oscillated up and down in simple harmonic motion with and amplitude of 1 mm. The quality factor, Q, of the system is 15. a. What is Wo (undamped frequency) for the system? b. What is the amplitude of forced oscillation at W = Wo c. What is the mean...
A mass m hangs in the presence of gravity on the end of a spring fastened...
A mass m hangs in the presence of gravity on the end of a spring fastened at the top. The spring is initially outstretched. The mass is released at t = 0 with velocity = 0. Solve the differential equation that results from applying Newton’s second law [Hint: you should obtain an inhomogeneous second order differential equation where the homogeneous equation is just simple harmonic oscillator. Note the spring is under the action of two forces: the restoring force F...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass...
A block with mass m =7.3 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.29 m. While at this equilibrium position, the mass is then given an initial push downward at v = 5 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m Submit 2) What is the oscillation frequency? Hz Submit 3) After t = 0.45 s what is...
A block with mass m =7.1 kg is hung from a vertical spring. When the mass...
A block with mass m =7.1 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.24 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.5 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? 2) What is the oscillation frequency? 3) After t = 0.38 s what is the speed of the...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.27 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.5 m/s. The block oscillates on the spring without friction. 1. What is the spring constant of the spring? 2. What is the oscillation frequency? 3. After t = 0.46 s what is the speed of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT