Question

In space, you hold up a proton in each hand and let them go. Which of...

In space, you hold up a proton in each hand and let them go. Which of the following are true as they move apart from each other? (Choose all that apply.)

Their acceleration keeps decreasing.

Their electric potential energy keeps increasing.

Their kinetic energy keeps decreasing.

Their kinetic energy keeps increasing.

Their electric potential energy keeps decreasing

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
if you hold up proton in each hand and release them, which of the following is...
if you hold up proton in each hand and release them, which of the following is true as they move apart from each other? choices: electric potential energy increases acceleration decreases kinetic energy increases kinetic energy decreases electric potential energy keeps decreasing True or false? electrically neutral objects cannot exert electrical force on each other, but they can exert gravitational force on each other? pls answer both as they easier.
electron is moving towards south. as it moves thru magnetic field, electron curves upward toward ceiling...
electron is moving towards south. as it moves thru magnetic field, electron curves upward toward ceiling of lab. which direction is the magnetic field pointing? choices: east downward upward west north if you hold a charge in each hand and let them go in space, what is the true regarding motion of smaller charge. select all that apply it will move with decreasing acceleration it will move with increasing acc it will move with increasing speed it will move with...
Which of the following forms of energy make up the mechanical energy? Choose all that apply...
Which of the following forms of energy make up the mechanical energy? Choose all that apply a) electrical b) chemical c) solar d)kinetic e) potential f) magnetic g) nuclear
An electron, a neutron(which has zero charge) and a proton are in an electric field generated...
An electron, a neutron(which has zero charge) and a proton are in an electric field generated by charged plates which points in the +x direction. The three particles are sufficiently far apart that their forces on each other are negligible. Assume also that forces other than the electrostatic ones on the three particles are negligible. We know that: (Choose the correct answers) the acceleration of the electron is in the +x direction. the x coordinate of the electron is less...
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V...
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V = 30 kV. They enter a region containing a uniform magnetic field of strength B = 0.25 T. The particles move parallel to each other and perpendicular to B~ . (a) Compute the kinetic energy of each particle. Which is largest? Which is smallest? By what factor? (b) Compute the radius of each particle’s cyclotron orbit. (c) Critical Thinking. Is this setup effective for...
The electric potential in a region of space as a function of position x is given...
The electric potential in a region of space as a function of position x is given by the equation V(x) = αx2 + βx - γ, where α = 2V/m2, β = 7V/m, and γ = 15V. All nonelectrical forces are negligible. An electron starts at rest at x = 0 and travels to x = 20 m. Calculate the magnitude of the work done on the electron by the electric field during this process. Calculate the speed of the...
Stationary planets “A” and “B”, each with mass 1024 kg, are located 106 m away from...
Stationary planets “A” and “B”, each with mass 1024 kg, are located 106 m away from each other in the horizontal direction (x). Space capsule “C” with a mass of 1000 kg starts at rest 106 m from both “A” and “B”, so the three objects form an equilateral triangle. Assume that “A” and “B” have a fixed position and cannot move, while “C” is able to move freely. What is the net gravitational force vector on “C” at time...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V .The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27 kg , respectively. Part A Mechanical energy is conserved in the presence...
2. A ball of negligible size and a given mass is attached to a vertical spring...
2. A ball of negligible size and a given mass is attached to a vertical spring that obeys Hooke's law. At equilibrium, its position and gravitational potential energy is chosen to be "zero". The mass is set in oscillation in a vertical direction. At what point during the oscillation will the ball-earth-spring system have the most negative gravitational potential energy? A. The gravitational potential energy will be the most negative at its lowest position from the earth. B. The gravitational...
Multiple choice questions, only one answer is correct for each question. Please answer the question carefully,...
Multiple choice questions, only one answer is correct for each question. Please answer the question carefully, they are very important. 1What is Pascal's Law? When gasses aren't constrained they tend to expand or contract, which depends on the pressure. You can squeeze air into tighter spaces by pressing the molecules together. In a contained incompressible fluid, any external pressure applied at one point will raise pressure equally at every point. An object placed in water is buoyed up with a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT