Question

A solid disk, ( ) with a 0.25 meter radius and a mass of 0.35 kilograms...

A solid disk, ( ) with a 0.25 meter radius and a mass of 0.35 kilograms is rolling along at a constant speed. The disk is rolling with a rotational speed of 38 radians per second.

(a) Find the linear speed of the disk in m/s.

(b) Calculate the total kinetic energy of the disk in joules.

(c) Suppose the disk begins rolling down a steep incline. Determine the speed of the disk when it is 6.5 meters below its starting height. Express your answer in m/s.

(d) Suppose the solid disk was replaced by a hollow wheel with the same mass and size. Given the same initial speed, would the wheel take more time, less time or the same amount of time to reach the bottom of the incline? Explain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid disk of mass m1 = 9.8 kg and radius R = 0.25 m is...
A solid disk of mass m1 = 9.8 kg and radius R = 0.25 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.9 kg and length L = 2R = 0.5 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1)What is the initial angular momentum of the rod and disk system? 2)What is the...
A disk with a c value of 1/2, a mass of 9 kg, and radius of...
A disk with a c value of 1/2, a mass of 9 kg, and radius of 0.26 meters, rolls without slipping down an incline with has a length of 9 meters and angle of 30 degrees. At the top of the incline the disk is spinning at 37 rad/s. What is the rotational kinetic energy of the disk at the bottom of the incline in Joules?
An object (either solid sphere, hoop or solid disk) of Mass M=10kg and radius R=4m is...
An object (either solid sphere, hoop or solid disk) of Mass M=10kg and radius R=4m is at the bottom of an incline having inclination angle X=40 degrees and base length X=15 meters, with an initial rotational velocity omega(i)=2rad/s; it is subsequently pulled up the the incline by some force F=15 (Newtons) such that at the top of the incline it has a final rotational velocity omega(f)=7rad/s. Determine: a) the linear velocity, b) rotational KE and c) total work and work...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at...
A disk with mass m = 8.5 kg and radius R = 0.35 m begins at rest and accelerates uniformly for t = 18.9 s, to a final angular speed of ? = 29 rad/s. a) What is the angular acceleration of the disk? b) What is the angular displacement over the 18.9 s? c) What is the moment of inertia of the disk? d) What is the change in rotational energy of the disk? e) What is the tangential...
A solid disk with a radius of 33.3 cm is moving so that its center of...
A solid disk with a radius of 33.3 cm is moving so that its center of mass is initially moving at 4 m/s while also rolling without slipping at 12rad/s along a horizontal surface. It rolls up an incline, coming to rest as shown before rolling back down (drawing is not to scale). Consider the disk at the bottom of the hill. What is the ratio of the rotational kinetic energy to the total kinetic energy of the disk, Krot/Ktotal?A....
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.38 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? 2) What...
A uniform solid disk of mass 2.20 kg and diameter 50.0 cm starts from rest and...
A uniform solid disk of mass 2.20 kg and diameter 50.0 cm starts from rest and rolls without slipping down a 30.0 ? incline that is 5.25 m long. g = 9.81 m/s2 . (a) Calculate the linear speed of the center of the disk when it reaches the bottom of the incline. (b) Determine the angular speed of the disk about its center at the bottom of the incline. (c) Through what angle (in radians) does this disk turn...
A uniform solid disk of mass 3.60 kg and diameter 45.0 cm starts from rest and...
A uniform solid disk of mass 3.60 kg and diameter 45.0 cm starts from rest and rolls without slipping down a 39.0 ? incline that is 6.25 m long.  g = 9.81 m/s2 . (a) Calculate the linear speed of the center of the disk when it reaches the bottom of the incline. b) Determine the angular speed of the disk about its center at the bottom of the incline. c) Through what angle (in radians) does this disk turn as...
a solid disk of mass M and radius R is rotating on the vertical axle with...
a solid disk of mass M and radius R is rotating on the vertical axle with angular speed. another disk of mass M/2 and radius R initially not rotating falls coaxially on the disk and sticks. the rotational velicity of this system after collision is
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is rotating with a constant angular velocity of ω = 39 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.46 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 6) The rod took t = 5.4 s to accelerate to its final angular speed...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT