Question

Three moles of an idea gas expand slowly and isothermally from volume V to 2 V....

Three moles of an idea gas expand slowly and isothermally from volume V
to 2 V. What is the change in entropy of the gas in the process?
(A) 3Rln2
(B) 2Rln3
(C) 0
(D) -3Rln2
*R is the universal gas constant

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.95 moles of an ideal gas are compressed isothermally at a temperature of 18.8∘18.8 ∘ C...
3.95 moles of an ideal gas are compressed isothermally at a temperature of 18.8∘18.8 ∘ C in a reversible process. If 985 J of work are done on the gas in this process, what is the change in entropy of the gas?
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the volume of the gas changes from 3.30*10^-2m^3 to 4.50*10^-2m^3. Part A, Calculate the initial temperature of the gas. Part B, Calculate the final temperature of the gas. Part C, Calculate the amount of work the gas does in expanding. Part D, Calculate the amount of heat added to the gas. Part E, Calculate the change in internal energy of the gas.
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm...
17) Three moles of an ideal monatomic gas expand at a constant pressure of 2.70 atm ; the volume of the gas changes from 3.10×10−2 m3 to 4.60×10−2 m3 . Part A Calculate the initial temperature of the gas. Part B Calculate the final temperature of the gas. Part C Calculate the amount of work the gas does in expanding. Part D Calculate the amount of heat added to the gas. Part E Calculate the change in internal energy of...
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a...
1.3 mole of an ideal gas at 300 K is expanded isothermally and reversibly from a volume V to volume 4V. What is the change in entropy of the gas, in J/K?
Two moles of helium gas initially at 195 K and 0.32 atm are compressed isothermally to...
Two moles of helium gas initially at 195 K and 0.32 atm are compressed isothermally to 1.83 atm. a) Find the final volume of the gas. Assume that helium behaves as an ideal gas. The universal gas constant is 8.31451 J/K
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally from a volume of 1.23 L to a volume of 4.44 L. a) Sketch a P vs.V graph. b) Calculate the work done by the gas. c) Calculate the heat flow into or out of the gas. d) If the number of moles is doubled, by what factors do your answers to parts (b) and (c) change? Explain.
a machinr carries 2 moles of an ideal diatomic gas thay is initially at a volume...
a machinr carries 2 moles of an ideal diatomic gas thay is initially at a volume of 0.020 m^3 and a temperature of 37 C is heated to a constant volumes at the temperature of 277 C is allowed to expand isothermally at the initial pressure, and finally it is compressed isobarically to its original volume, pressure and temperature. 1. determine the amount of heat entering the system during the cycle. 2. calculate the net work affected by the gas...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....
An ideal gas expands quasistatically and isothermally from a state with pressure p and volume V...
An ideal gas expands quasistatically and isothermally from a state with pressure p and volume V to a state with volume 6.9V. How much heat is added to the expanding gas? (Use any variable or symbol stated above as necessary.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT