Question

A block with a mass of 2.50 kg on a spring has displacement as a
function of time given by the equation

x(t)= (7.9 cm) cos [5.5 rad/s) t - 2.42 rad].

Part A: what is maximum kinetic energy during oscillation? (.......J)

Part B: what is the velocity of block at t = 2.3 s ? (.....m/s)

Part C: if kinetic energy and potential energy are equal, what is the positive value of the displacement? (X=.....cm)

(i have only 1 left try please help me thanks)

Answer #1

The displacement of a block of mass 0.933 kg attached to a
spring whose spring constant is 66N/m is given by x=Asin(ωt) where
A=0.21m. In the first complete cycle find the values of x and t at
which the kinetic energy is equal to one half the potential
energy.
First position: cm...... First time: s.
Second position: cm...... Second
time: s..
Third position: cm...... Third time: s.
Fourth position: cm...... Fourth time: s.

A 0.30 kg block oscillates back and forth along a straight line
on a frictionless horizontal surface. Its displacement from the
origin is given by x = (18 cm)cos[(11 rad/s)t + π/2 rad] (a) What
is the oscillation frequency? (b) What is the maximum speed
acquired by the block? (c) At what value of x does this occur? (d)
What is the magnitude of the maximum acceleration of the block? (e)
At what positive value of x does this occur?...

A block with mass m =6.2 kg is hung from a vertical spring. When
the mass hangs in equilibrium, the spring stretches x = 0.22 m.
While at this equilibrium position, the mass is then given an
initial push downward at v = 4.6 m/s. The block oscillates on the
spring without friction.
What is the spring constant of the spring?
2)
What is the oscillation frequency?
After t = 0.32 s what is the speed of the block?
What...

1.A 1.10 kg block sliding on a horizontal frictionless surface
is attached to a horizontal spring with k = 490 N/m. Let
x be the displacement of the block from the position at
which the spring is unstretched. At t = 0 the block passes
through x = 0 with a speed of 3.40 m/s in the positive
x direction. What are the (a) frequency
and (b) amplitude of the block's motion
2.A vertical spring stretches 13 cm when a...

A horizontal block-spring system with the block on a
frictionless surface has total mechanical energy E = 54.5
J and a maximum displacement from equilibrium of 0.285 m.
(a) What is the spring constant?
N/m
(b) What is the kinetic energy of the system at the equilibrium
point?
J
(c) If the maximum speed of the block is 3.45 m/s, what is its
mass?
kg
(d) What is the speed of the block when its displacement is 0.160
m?
m/s...

A horizontal block-spring system with the block on a
frictionless surface has total mechanical energy E = 41.4
J and a maximum displacement from equilibrium of 0.284 m.
(a) What is the spring constant?
N/m
(b) What is the kinetic energy of the system at the equilibrium
point?
J
(c) If the maximum speed of the block is 3.45 m/s, what is its
mass?
kg
(d) What is the speed of the block when its displacement is 0.160
m?
m/s ...

A horizontal block-spring system with the block on a
frictionless surface has total mechanical energy E = 53.9
J and a maximum displacement from equilibrium of 0.197 m.
(a) What is the spring constant?
N/m
(b) What is the kinetic energy of the system at the equilibrium
point?
J
(c) If the maximum speed of the block is 3.45 m/s, what is its
mass?
kg
(d) What is the speed of the block when its displacement is 0.160
m?
m/s...

A block with mass m =7.5 kg is hung from a vertical spring. When
the mass hangs in equilibrium, the spring stretches x = 0.25 m.
While at this equilibrium position, the mass is then given an
initial push downward at v = 4.1 m/s. The block oscillates on the
spring without friction.
After t = 0.3 s what is the speed of the block?
What is the magnitude of the maximum acceleration of the
block?
At t = 0.3...

A block with a mass of 0.600 kg is connected to a spring,
displaced in the positive direction a distance of 50.0 cm from
equilibrium, and released from rest at t = 0. The block then
oscillates without friction on a horizontal surface. After being
released, the first time the block is a distance of 25.0 cm from
equilibrium is at t = 0.200 s.
a.What is the block's period of oscillation?
_______ s
b.What is the the numerical value...

a) A block with a mass of 0.600 kg is connected to a spring,
displaced in the positive direction a distance of 50.0 cm from
equilibrium, and released from rest at t = 0. The block then
oscillates without friction on a horizontal surface. After being
released, the first time the block is a distance of 15.0 cm from
equilibrium is at t = 0.200 s.
What is the block's period of oscillation?
_______ s
b) A block with a...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 30 minutes ago

asked 30 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 3 hours ago

asked 4 hours ago