Question

An RC circuit is connected across a DC voltage source through an open switch. The switch...

An RC circuit is connected across a DC voltage source through an open switch. The switch is closed at t = 0s. Which of the following is a correct statement regarding this circuit?

a) The voltage on this capacitor after two time constants is about 100% of its maximum value

b) The charge on the capacitor after one time constant is about 50% of its maximum value

c)The charge on the capacitor after four time constants is about 98% of the maximum value

d) The voltage on the capacitor after two time constants is about 14% of the maximum value

e)The charge on the capacitor after one time constant is about 25% of its maximum value

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 285-Ω resistor is in series with a 35.5 μF capacitor and a 27.0-V voltage source...
A 285-Ω resistor is in series with a 35.5 μF capacitor and a 27.0-V voltage source with the circuit switch open and the capacitor uncharged. (a) What is the time constant of this RC circuit? 10.1175 ms (b) Calculate the maximum charge the capacitor can accumulate. .000972 C (c) Calculate the charge on the capacitor 5.25 ms after the switch is closed. .0005785083113C Please check my answers. Thanks!
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor...
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor and a battery of Ɛ= 9 V and a switch. At t = 0 s, the switch is closed and the capacitor is allowed to charge. a) Calculate the charge on the capacitor plates after 5 seconds. b) Calculate the voltage across the capacitor and the resistor after 5 seconds. c) Calculate the current flowing through the resistor after 5 seconds. d) How long...
A 10V DC source is connected in series with a switch, a 50ohm resistor, and a...
A 10V DC source is connected in series with a switch, a 50ohm resistor, and a 13mH inductor. The switch is closed at t=0. What will be the approximate voltage drop across the resistor when t>3tau?
An RC circuit consists of a resistor with a resistance 2 kOhms, a 120-V battery and...
An RC circuit consists of a resistor with a resistance 2 kOhms, a 120-V battery and two capacitors, C1 and C2, with capacitances of 20.0uF and 60uF, respectively all connected in series. Initially the capacitors are uncharged; and the switch is closed at t=0 seconds. A.)What is the total capacitance in the circuit? B.)What is the time constant of the circuit? C.)How much charge will be stored in each capacitor after a long time has elasped D.)Determine the total charges...
114a-three capacitors C1,C2,C3 connected in series across DC voltage source of 15V. the corresponding values of...
114a-three capacitors C1,C2,C3 connected in series across DC voltage source of 15V. the corresponding values of the capacitances are C1=8UF,C2=1UF, C3=3UF draw the equivalent circuit and calculate the a-equivalent capacitance of the circuit b-charge of each capacitor 114b-two capacitors are connected in series giving an equivalent capacitance of 60uF, the total charge for the equivalent capacitance is 15x10-3 calculate the stored energy in the capacitor
A series RC circuit with C = 44 μF and R = 6.4 Ω has a...
A series RC circuit with C = 44 μF and R = 6.4 Ω has a 24 V source in it. With the capacitor initially uncharged, an open switch in the circuit is closed. a) After the switch has been closed for t = 3 τ, what is the charge on the capacitor?
An RC circuit includes a 2-k Ω resistor, a battery with emf of 12.0 V and...
An RC circuit includes a 2-k Ω resistor, a battery with emf of 12.0 V and a capacitor. At t = 0 the switch is closed and the charging of the capacitor begins. Knowing that the time constant of the circuit is measured to be 1 ms calculate: (a) the capacitance of the capacitor; (b) the time it takes for the voltage across the resistor to reach 4 V, and (c) the charge accumulated on the capacitor during this time...
onsider a series RC circuit as in the figure below for which R = 3.00 MΩ,...
onsider a series RC circuit as in the figure below for which R = 3.00 MΩ, C = 6.00 µF, and  = 27.0 V. The circuit is a rectangular loop. The bottom side of the loop has a battery labeled emf ℰ, oriented with the positive terminal to the right of the negative terminal. The right side has a resistor R. The top side contains an open switch S. The left side has a capacitor C. (a) Find the time constant...
An ac voltage source is connected across a series circuit abcd consisting of a resistor between...
An ac voltage source is connected across a series circuit abcd consisting of a resistor between a and b of 12.6 Ω, a variable capacitor between b and c of 64μF and a coil between c and d of 84 mH and a resistance of 8.4 Ω. The voltage measured across the circuit after 0.8932 ms is 94 V at 50 Hz.
An RC circuit consists of a 3.00 V battery attached to a 50.0 uF capacitor in...
An RC circuit consists of a 3.00 V battery attached to a 50.0 uF capacitor in series with a 100.0 kilo-Ohm resistor. The circuit has a switch that is initially open (no initial charge on the capacitor). A: find the current through the circuit immediately after the switch is closed B: find the current 12 seconds after the switch is closed.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT