Question

The equation describing the position of a particle executing simple harmonic oscillation is x = 20...

The equation describing the position of a particle executing simple harmonic oscillation is x = 20 cos(30pi t), where x is in meters and t is in seconds. Find a) the period of the oscillation b) the amplitude of the oscillation c) the phase at times t1 = 1/180 s and t2 = 1/90 s, and d) the position, the velocity, and the acceleration at those times t1 and t2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The position of an object in simple harmonic motion as a function of time is given...
The position of an object in simple harmonic motion as a function of time is given by ? = 3.8??? (5??/4 + ?/6) where t is in seconds and x in meters. In t = 2.0s calculate (a) the period, (b) the oscillation frequency (c) velocity and (d) acceleration.   
In an engine, a piston oscillates with simple harmonic motion so that its position varies according...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 7.00 cos(3t + π/7) where x is in centimeters and t is in seconds. (a) At t = 0, find the position of the piston. ____ cm (b) At t = 0, find velocity of the piston. ____ cm/s (c) At t = 0, find acceleration of the piston. ____ cm/s^2 (d) Find the period and amplitude of the...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 8.00 cos (3t + pi/4) where x is in centimeters and t is in seconds. (a) At t = 0, find the position of the piston. cm (b) At t = 0, find velocity of the piston. cm/s (c) At t = 0, find acceleration of the piston. cm/s2 (d) Find the period and amplitude of the motion. period...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position,...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the origin, at t = 0 and moves to the right. The amplitude of its motion is 3.10 cm, and the frequency is 1.60 Hz. (a) Find an expression for the position of the particle as a function of time. (Use the following as necessary: t. Assume that x is in centimeters and t is in seconds. Do not include units in your answer.)...
3. A particle moves in simple harmonic motion according to x = 3 cos(10t)., where x...
3. A particle moves in simple harmonic motion according to x = 3 cos(10t)., where x is in meters and t is in seconds, its maximum acceleration is? A. 30sin(10t) m/s/s B. 30cos(10t) m/s/s C. 50 m/s/s D. 150 m/s/s E. 300 m/s/s
In an engine, a piston oscillates with simple harmonic motion so that its position varies according...
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the expression, x = 3.00 cos(t+π/4) (a) At t = 0, find the position of the piston.where x is in centimeters and t is in seconds. We are given x as a function of time. For any x(t) you can determine the position at a particular time by putting that value into the function. cm (b) At t = 0, find velocity of...
A particle performs simple harmonic oscillations along the x-axis about the equilibrium position of x=0. The...
A particle performs simple harmonic oscillations along the x-axis about the equilibrium position of x=0. The angular frequency of the oscillations (w) is 4 Hz. At t=0, the particle is observed to be at a position x0 = 25 cm, and traveling with a velocity v0 = 100 cm/s along the x-axis. Find the position and velocity of the particle at t = 2.4 s.
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position,...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the maximum value, at t = 0, moving to the right. The amplitude of the motion is 2.00 cm and the frequency is 1.50 Hz. (a) Find an expression for the position of the particle as a function of time. Determine (b) the maximum speed of the particle and (c) the earliest time (t > 0) at which the particle has this speed. Find...
An object is undergoing simple harmonic motion along the x-axis. its position is described as a...
An object is undergoing simple harmonic motion along the x-axis. its position is described as a function of time by x(t)= 5.3cos(4.2t-1.9), where x is in meters, the time t, is in seconds, and the argument of the cosine is in radians. c) determine the position of the object, in meters, at the time t=2.6s? d) what the objects velocity, in meters per second, at the time t=2.6s? e) calculate the objects acceleration, in meters per second squared, at time...
A simple harmonic oscillator's position is given by y(t) = (0.950 m)cos(11.8t − 6.15). Find the...
A simple harmonic oscillator's position is given by y(t) = (0.950 m)cos(11.8t − 6.15). Find the oscillator's position, velocity, and acceleration at each of the following times. (Include the sign of the value in your answer.) (a)     t = 0 position       m velocity     m/s acceleration     m/s2 (b)     t = 0.500 s position     m velocity     m/s acceleration     m/s2 (c)     t = 2.00 s position     m velocity     m/s acceleration     m/s2