Question

1) A 2.0kg mass is fastened to the end of a spring with a spring constant...

1) A 2.0kg mass is fastened to the end of a spring with a spring constant of 200 N/m. At t = 0 the mass is at equilibrium position and has a velocity of +1.0m/s.

a) What is the angular frequency, frequency and period (include units)?

b)From the initial conditions, calculate the amplitude and phase angle of the oscillation, then express its displacement, velocity and acceleration as functions of time. Remember that the amplitude is positive.

c) Tabulate the displacement, velocity, acceleration, kinetic energy, potential energy and mechanical energy at t=0,T/3,T/2,3T/4.

2) Answer the same question as in the previous problem if at t=0, the mass is at -5cm and has a velocity of -0.5 root3 m/s.

Homework Answers

Answer #1

Here we apply concept of simple harmonic motion of mass spring oscillations.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
A spring with a spring constant of 40 N/m is allowed to bob with an amplitude...
A spring with a spring constant of 40 N/m is allowed to bob with an amplitude of 20 cm. If the mass on the spring is 2kg and the phase constant is 0, what is The frequency of oscillation? The period of oscillation? The maximum velocity? The maximum acceleration? The position equation? The velocity at t=3 s?
Consider a mass-spring system. The spring has constant k=30N/m and the mass m=3kg. The mass oscillates...
Consider a mass-spring system. The spring has constant k=30N/m and the mass m=3kg. The mass oscillates with amplitude of 10cm. What is the frequency of oscillation? What is the displacement at time t=0? When is the first time for the mass to be at maximum displacement? (t=?) What is the maximum acceleration felt by the mass? Where in the motion does this occur? What is the minimum acceleration felt by the mass? Where in the motion does this occur? What...
8. A 0.40-kg mass is attached to a spring with a force constant of k =...
8. A 0.40-kg mass is attached to a spring with a force constant of k = 387 N/m, and the mass–spring system is set into oscillation with an amplitude of A = 3.7 cm. Determine the following. (a) mechanical energy of the system J (b) maximum speed of the oscillating mass m/s (c) magnitude of the maximum acceleration of the oscillating mass m/s2
At t=0, an 840-g mass at rest on the end of a horizontal spring (k =...
At t=0, an 840-g mass at rest on the end of a horizontal spring (k = 160 N/m ) is struck by a hammer which gives it an initial speed of 2.30 m/s . Determine the period of the motion. Determine the frequency of the motion. Determine the amplitude Determine the maximum acceleration. Determine the total energy. Determine the kinetic energy when x=0.40A where A is the amplitude
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m....
A mass of 1.79 kg is placed on a spring with spring constant of 280 N/m. After being pulled to its positive amplitude position and released, the resulting simple harmonic motion has a maximum velocity of 1.126 m/s. (a) Calculate the angular frequency of the oscillation.   rad/s (b) Calculate the minimum time elapsed for the mass to reach the 0.044 m position (distance from the equilibrium position).    s (c) Calculate the velocity of the mass at the time found in part (b).    m/s
An object of mass m = 0.25 kg has a horizontal spring attached to its left...
An object of mass m = 0.25 kg has a horizontal spring attached to its left side, and slides along a frictionless surface. The spring constant is κ = 0.4 N m . At t = 0 s, the object is displaced 0.1m to the right of its equilibrium position. Its initial velocity is 0.4 m s , toward the right. a) Calculate the period T of the motion. b) Calculate the angular frequency ω. c) Calculate the frequency ν....
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is...
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is 10^4 dynas/cm. At time t=0, the mass is about 3 cm from the equilibrium point and with an initial velocity of 5cm/s, both in the positive direction.A dissipative force is now added. Assume that you start moving from rest at the maximum amplitude position, and after oscillating for 10 s, your maximum amplitude is reduced to half of the initial value. Calculate: A- dissipation...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m...
A 50.0 gram mass connected to a spring with a spring constant of 35 N m oscillates on a horizontal, frictionless surface with an amplitude of 4.00 cm. (i) What is the total mechanical energy of the system? (ii) What is the speed of the mass when the displacement is 1.00 cm? (iii) What is the potential energy when the displacement is 3.00 cm? (iv) What is the kinetic energy when the displacement is 3.00 cm?
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic motion, what are the frequency, angular frequency, and period of the motion? The frequency, f = The angular frequency, ω = The period, T =   If the total mechanical energy of the system is 72 J, what are the amplitude, maximum speed and maximum acceleration of the motion? The amplitude, A =   The maximum speed, vmax = The maximum acceleration, amax =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT