Question

The equation of a transverse wave traveling along a very long string is y = 4.60...

The equation of a transverse wave traveling along a very long string is y = 4.60 sin(0.0684πx+ 2.07πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 8.64 cm when t = 0.375 s?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A transverse sinusoidal wave is moving along a string in the positive direction of an x...
A transverse sinusoidal wave is moving along a string in the positive direction of an x axis with a speed of 93 m/s. At t = 0, the string particle at x = 0 has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = 0 is 16 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave?...
A transverse sinusoidal wave is moving along a string in the positive direction of an x-axis...
A transverse sinusoidal wave is moving along a string in the positive direction of an x-axis with a speed of 89 m/s. At t = 0, the string particle at x = 0 has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = 0 is 18 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave? If...
A transverse wave is traveling on a string. The displacement y of a particle from its...
A transverse wave is traveling on a string. The displacement y of a particle from its equilibrium position is given by y = (0.021 m) sin(25t - 2.0x). Note that the phase angle 25t - 2.0x is in radians, t is in seconds, and x is in meters. The linear density of the string is 2.3 × 10-2 kg/m. What is the tension in the string?
A transverse wave is traveling on a string. The displacement y of a particle from its...
A transverse wave is traveling on a string. The displacement y of a particle from its equilibrium position is given by y = (0.021 m) sin(25t - 2.0x). Note that the phase angle 25t - 2.0x is in radians, t is in seconds, and x is in meters. The linear density of the string is 2.0 × 10-2 kg/m. What is the tension in the string?
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The...
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The acceleration of a small lump of mass on the string (a) varies sinusoidally in time in a direction perpendicular to the string, (b) varies sinusoidally in time in a direction parallel to the string, (c) is 10 m/s 2 , (d) is zero. (1B) In a periodic transverse wave on a string the value of the wave speed depends on (a) amplitude, (b) wavelength,...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Also determine the transverse velocity at t = 0.16 sec.
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm...
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Find the maximum x. Also determine the transverse velocity at t = 0.16 sec and x's maximum.
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".
The wave function for a traveling wave on a taut string is (in SI units) y(x,t)...
The wave function for a traveling wave on a taut string is (in SI units) y(x,t) = 0.380 sin (5πt − 4πx + π 4) (a) What are the speed and direction of travel of the wave? speed ________ m/s direction(positive-x, positive-y, positive-z, negative-x, negative-y, negative-z) (b) What is the vertical position of an element of the string at t = 0, x = 0.120 m? _______m (c) What is the wavelength of the wave? _______m (d) What is the...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30 mm Wavelength of the wave = 0.128 m Speed of the wave = 328 m/s a) Determine the time for a particle of the string to move through a total distance of 1.50 km. in s b) If the string is held under a tension of 982 N, determine its linear density. in g/m
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT