Question

A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of...

A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the force of gravity on the marble as viewed by the observers on the Earth? (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2)

A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km. The time it takes for the satellite to travel around the Earth is (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius...
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius of Earth is 6.37 x 106 m, and the Earth’s mass is 5.98 x 1024 kg. A) Assuming a circular orbit, how long does the satellite take to complete one orbit? B) What is the satellite’s speed?
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface....
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface. Determine the speed of the satellite. (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.) (in km/s)
A 345 kg satellite is orbiting on a circular orbit 8955 km above the Earth's surface....
A 345 kg satellite is orbiting on a circular orbit 8955 km above the Earth's surface. What is the gravitational acceleration at the location of the satellite? (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.)?
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km...
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km above the Earth’s surface. What is the minimum amount of work the satellite’s thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth’s surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and ME = 5.97 x 1024 kg respectively. The...
How fast is a satellite moving if it is in a circular orbit whose radius is...
How fast is a satellite moving if it is in a circular orbit whose radius is 22000 km? G = 6.67 x 10-11 Nm2/kg2, and the mass of the earth is 5.98 x 1024 kg.
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface....
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface. What is the period of the satellite in hours? (Earth radius 6.378×1066.378×106 m, Earth mass 5.97×10245.97×1024 kg, Universal Gravitational constant G=6.67×10−11m3kg−1s−2G=6.67×10−11m3kg−1s−2 ).
A satellite is in circular orbit at an altitude of 1800 km above the surface of...
A satellite is in circular orbit at an altitude of 1800 km above the surface of a nonrotating planet with an orbital speed of 3.7 km/s. The minimum speed needed to escape from the surface of the planet is 8.4 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to 59 min. 83 min. 75 min. 67 min. 51 min.
(a) Calculate the orbital speed of a satellite that orbits at an altitude h = one...
(a) Calculate the orbital speed of a satellite that orbits at an altitude h = one Earth radius above the surface of the Earth. (b) What is the acceleration of gravity at this altitude? (G = 6.67 x 10-11 N.m2 /kg2 , ME = 5.97 x 1024 kg, RE = 6.37 x 106 m)
A satellite is in circular orbit at an altitude of 1500 km above the surface of...
A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 3.4 km/s. The minimum speed needed to escape from the surface of the planet is 8 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to A)59 min. B)45 min. C)72 min. D)65 min. E)52 min.