Question

A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of...

A 4,000 kg satellite is traveling in a circular orbit 200 km above the surface of the Earth. A 30.0 gram marble is dropped inside the satellite. What is the force of gravity on the marble as viewed by the observers on the Earth? (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2)

A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km. The time it takes for the satellite to travel around the Earth is (ME = 5.98 × 1024 kg, RE = 6.37 × 106 m, G = 6.67 × 10−11 N·m2/kg2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius...
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius of Earth is 6.37 x 106 m, and the Earth’s mass is 5.98 x 1024 kg. A) Assuming a circular orbit, how long does the satellite take to complete one orbit? B) What is the satellite’s speed?
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface....
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface. Determine the speed of the satellite. (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.) (in km/s)
A 345 kg satellite is orbiting on a circular orbit 8955 km above the Earth's surface....
A 345 kg satellite is orbiting on a circular orbit 8955 km above the Earth's surface. What is the gravitational acceleration at the location of the satellite? (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.)?
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km...
Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km above the Earth’s surface. What is the minimum amount of work the satellite’s thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth’s surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and ME = 5.97 x 1024 kg respectively. The...
How fast is a satellite moving if it is in a circular orbit whose radius is...
How fast is a satellite moving if it is in a circular orbit whose radius is 22000 km? G = 6.67 x 10-11 Nm2/kg2, and the mass of the earth is 5.98 x 1024 kg.
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface....
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface. What is the period of the satellite in hours? (Earth radius 6.378×1066.378×106 m, Earth mass 5.97×10245.97×1024 kg, Universal Gravitational constant G=6.67×10−11m3kg−1s−2G=6.67×10−11m3kg−1s−2 ).
A satellite is in circular orbit at an altitude of 1800 km above the surface of...
A satellite is in circular orbit at an altitude of 1800 km above the surface of a nonrotating planet with an orbital speed of 3.7 km/s. The minimum speed needed to escape from the surface of the planet is 8.4 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to 59 min. 83 min. 75 min. 67 min. 51 min.
(a) Calculate the orbital speed of a satellite that orbits at an altitude h = one...
(a) Calculate the orbital speed of a satellite that orbits at an altitude h = one Earth radius above the surface of the Earth. (b) What is the acceleration of gravity at this altitude? (G = 6.67 x 10-11 N.m2 /kg2 , ME = 5.97 x 1024 kg, RE = 6.37 x 106 m)
A satellite is in circular orbit at an altitude of 1500 km above the surface of...
A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 3.4 km/s. The minimum speed needed to escape from the surface of the planet is 8 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to A)59 min. B)45 min. C)72 min. D)65 min. E)52 min.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT