Question

A circular loop of wire is perpendicular to a 0.16 T uniform magnetic field. The magnetic...

A circular loop of wire is perpendicular to a 0.16 T uniform magnetic field. The magnetic flux through the loop is 24 mWb. What is the radius of the loop?

Homework Answers

Answer #1

The magnetic flux through a closed loop is given by,

where B is the magnetic field and A is the area vector.

Here B and A are perpendicular. So . Therefore,

If r is the radius of the loop, then

Given B = 0.16T and = 24mWb = 24 x 10^-3Wb. Therefore,

So the radius of the loop is 22cm.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If...
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If the field is directed perpendicular to the plane of the loop and the magnetic flux through the loop is 7.40 ✕ 10−3 T · m2, what is the strength of the magnetic field? T (b) If the magnetic field is directed parallel to the plane of the loop, what is the magnetic flux through the loop? T · m2
A square loop of wire consisting of a single turn is perpendicular to a uniform magnetic...
A square loop of wire consisting of a single turn is perpendicular to a uniform magnetic field. The square loop is then re-formed into a circular loop, which also consists of a single turn and is also perpendicular to the same magnetic field. The magnetic flux that passes through the square loop is 5.15 × 10-3 Wb. What is the flux that passes through the circular loop?
13. A 12-cm-diameter circular loop of wire is placed in a 1.19-T magnetic field. a.) When...
13. A 12-cm-diameter circular loop of wire is placed in a 1.19-T magnetic field. a.) When the plane of the loop is perpendicular to the field lines, what is the magnetic flux through the loop? b.) The plane of the loop is rotated until it makes a 35 ∘ angle with the field lines. What is the angle in the equation ΦB = BAcosθ for this situation? c.) What is the magnetic flux through the loop at this angle?
A square loop of wire is held in a uniform 0.35 T magnetic field directed perpendicular...
A square loop of wire is held in a uniform 0.35 T magnetic field directed perpendicular to the plane of the loop. The length of each side of the square is decreasing at a constant rate of 4.0 cm/s. What emf is induced in the loop when the length is 9.2 cm?
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10...
A time-varying magnetic field is perpendicular to the plane of a circular loop of diameter 10 cm made with wire of diameter 3.4 mm and resistivity 2.07 × 10-8?·m. The magnetic field increases as a function of time, with magnitude B = (0.79 t) T/s a) What is the magnitude of the emf induced in the loop? b) What is the value of the current through the loop? c) At what rate does energy appear as thermal energy in the...
A 50 cm × 85 cm rectangular loop of wire is located in a region of...
A 50 cm × 85 cm rectangular loop of wire is located in a region of uniform magnetic field with a magnitude of B​0​​=3.32 Telsa, and oriented perpendicular to the wire loop. The wire is reshaped into a circular loop of radius r = 43 cm. What is the change in the magnitude of the the magnetic flux through the loop as a result of this change in shape? 2. A 60 cm×60 cm square loop of wire is placed...
The plane of loop with dimensions 10cm×10cm is initially perpendicular to a uniform 0.5T magnetic field....
The plane of loop with dimensions 10cm×10cm is initially perpendicular to a uniform 0.5T magnetic field. Find the change in flux through the loop if it is turned through 95 degrees about an axis perpendicular to the field lines.
The magnetic field perpendicular to a circular wire loop 8.0cm in diameter is changed from 0.70T...
The magnetic field perpendicular to a circular wire loop 8.0cm in diameter is changed from 0.70T toward the observer to 0.34T away from you in 160 milliSeconds. Q1. Calculate the magnitude of the induced EMF (during the change in B ) and determine what direction will the induced current flow during the change in B?   Will it be CW or CCW as you see it? a) The initial Flux is: b) The final Flux is: c) The induced EMF is:...
A circular wire loop of radius rr = 16 cmcm is immersed in a uniform magnetic...
A circular wire loop of radius rr = 16 cmcm is immersed in a uniform magnetic field BB = 0.375 TT with its plane normal to the direction of the field. If the field magnitude then decreases at a constant rate of −1.2×10−2 T/sT/s , at what rate should rr increase so that the induced emf within the loop is zero?
A steady current, I, flows along a circular loop generating a uniform magnetic field of 0.1T...
A steady current, I, flows along a circular loop generating a uniform magnetic field of 0.1T perpendicular to the plane of the loop, and a magnetic flux through the loop of 10-4 weber. Within a short time interval, the current and the magnetic flux both drop to zero. Based on the given information, find: (a) The initial current in the loop, (b) the inductance of the loop, and (c) the potential energy associated with the initial conditions of steady current....