Question

Draw a circuit using schematic symbols with a 10.0 v battery, a switch, a R=10Ω resistor,...

Draw a circuit using schematic symbols with a 10.0 v battery, a switch, a R=10Ω resistor, and capacitors C1= 4.00 µF and C2= 8.00 µF in series. What is the maximum charge stored in each capacitor and the voltage across each capacitor?

Homework Answers

Answer #1

The two capacitors can be replaced with a single one having C,

C = 4 x 8 / ( 4 + 8) = 2.67 mu F

The maximum charge on a capacitor accumulates after a very long duration. At this time the voltage across capacitor is equal to the battery voltage.

Vc = Vb

V1 + V2 = 10

Q1 = Q2

C1V1 = C2V2

4V1 = 8V2

V1 = 2V2

2V2 + V2 = 10

V2 = 3.33 Volts

Q2 = C2V2 = 8 muF x 3.33 = 26.64 mu C

V1 = 2 x V2 = 2 x 3.33 = 6.66 V

Q1 = C1V1 = 4 x 6.66 = 26.64 mu C

Hence, Q1 = Q2 = 26.64 mu C and V1 = 6.66 Volts and V2 = 3.33 Volts.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An RC circuit consists of a resistor with a resistance 2 kOhms, a 120-V battery and...
An RC circuit consists of a resistor with a resistance 2 kOhms, a 120-V battery and two capacitors, C1 and C2, with capacitances of 20.0uF and 60uF, respectively all connected in series. Initially the capacitors are uncharged; and the switch is closed at t=0 seconds. A.)What is the total capacitance in the circuit? B.)What is the time constant of the circuit? C.)How much charge will be stored in each capacitor after a long time has elasped D.)Determine the total charges...
A battery is connected to a resistor and an uncharged capacitor. The switch for the circuit...
A battery is connected to a resistor and an uncharged capacitor. The switch for the circuit is closed at t = 0 s. (Assume all circuit elements are connected in series.) (a) While the capacitor is being charged, which of the following is true? A. Current through and voltage across the resistor decrease. B. Current through and voltage across the resistor first increase and then decrease. C. Current through and voltage across the resistor first decrease and then increase. D....
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0...
Capacitor C1 = 10.0 micro F is connected in series to parallel combination of capacitors C2=7.0 microF and C3=8.0 microF. This circuit is connected to a battery delivering V=15.0 V. Find charge stored in capacitor C2 in mircoC.
For the system of capacitors shown in the figure below, find the following. (Let C1 =...
For the system of capacitors shown in the figure below, find the following. (Let C1 = 9.00 µF and C2 = 1.00 µF.) A circuit consists of a 90.0 V battery and four capacitors. The wire begins at the positive terminal of the battery and splits into two parallel branches before reconnecting and then ending at the negative terminal of the battery. Each branch contains two capacitors in series. One branch contains a capacitor labeled C1 followed by a 6.00...
An RC circuit includes a 2-k Ω resistor, a battery with emf of 12.0 V and...
An RC circuit includes a 2-k Ω resistor, a battery with emf of 12.0 V and a capacitor. At t = 0 the switch is closed and the charging of the capacitor begins. Knowing that the time constant of the circuit is measured to be 1 ms calculate: (a) the capacitance of the capacitor; (b) the time it takes for the voltage across the resistor to reach 4 V, and (c) the charge accumulated on the capacitor during this time...
Consider the following. (Let C1 = 14.40 µF and C2 = 8.40 µF.) A rectangular circuit...
Consider the following. (Let C1 = 14.40 µF and C2 = 8.40 µF.) A rectangular circuit contains a battery and four capacitors. The bottom side has a 9.00 V battery with the positive terminal on the left. The left and right sides of the circuit each contain a capacitor labeled C1. The top side splits into two parallel horizontal branches, which recombine before reaching the top right corner. There is a 6.00 µF capacitor on the upper branch and a...
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor...
An RC circuit consists of a resistor of 4 MΩ in series with a 5μF capacitor and a battery of Ɛ= 9 V and a switch. At t = 0 s, the switch is closed and the capacitor is allowed to charge. a) Calculate the charge on the capacitor plates after 5 seconds. b) Calculate the voltage across the capacitor and the resistor after 5 seconds. c) Calculate the current flowing through the resistor after 5 seconds. d) How long...
1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF...
1A) A circuit consists of a 12.0 V battery, a 100 kΩ resistor, a 20.0 μF capacitor in series with a switch which is initially in the open position. The capacitor is initially uncharged. Calculate the charge on the capacitor 6.00 seconds after the switch is closed. Calculate the current through the resistor 6.00 seconds after the switch is closed. 1B) A 20 μF capacitor has previously charged up to contain a total charge of Q=100 μC on it. The...
onsider a series RC circuit as in the figure below for which R = 3.00 MΩ,...
onsider a series RC circuit as in the figure below for which R = 3.00 MΩ, C = 6.00 µF, and  = 27.0 V. The circuit is a rectangular loop. The bottom side of the loop has a battery labeled emf ℰ, oriented with the positive terminal to the right of the negative terminal. The right side has a resistor R. The top side contains an open switch S. The left side has a capacitor C. (a) Find the time constant...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have the same plate area of 3.40 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 3.40. The total charge on the series arrangement is 13.8 pC. (a) What is the battery voltage? V (b) What is the potential difference across each...