Question

(a) A simple Atwood's machine consists of two masses connected by a string that passes over...

(a) A simple Atwood's machine consists of two masses connected by a string that passes over a pulley. Derive the formula for the acceleration of the masses for general m1 and m2 and evaluate for the case m1 = 3.50 kg and m2 = 5.50 kg. (b) What assumptions or modifications need to be included if the rotation of the pulley mass M, Radius R is taken into account? If M = 1.00 kg, R = 13.00 cm, determine a value for the modified acceleration a. (c) What percent difference occurs when pulley is ignored?

Homework Answers

Answer #1

Take clockwise to be positive for the pulley.

Mg - T1 = Ma assume M is one block maas and m is another and mp is mass of pulley

T2 - mg = ma

rT1 - rT2 = ½ mpr2a

now solve three equation eliminate T1 and T2  

we get  T1 - T2 = ½ mp a

Combining the three equations to eliminate the two tensions gives:

(Mg - Ma) - (mg + ma) = ½ mp a

Mg - mg = Ma + ma + ½ mp a

a =
g (M - m)
M + m + ½ mp

1. when mp =0 then a=(5.5-3.5)*9.81/(5.5+3.5) =2.18 m/s2

2. when mp = 1 kg then a=(5.5-3.5)*9.81/(5.5+3.5+.5*1) =2.065m/s2  

3. percentage differences =(2.18-2.065)*100 / 2.18 =5.275

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley is a disk of radius R and mass M, find the acceleration of the masses. Express your answer in terms of the variables m1, m2, R, M, and appropriate constants.
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley has radius and moment of inertia 1/2 MR^2 about its axle. Determine the acceleration if masses m1 and m2. Compare the situation in which moment of inertia is ignored
A mass m1 is connected by a light string that passes over a pulley of mass...
A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 2.00 kg, m2 is 1.00 kg, M is 4.00 kg, and the angle is 60.0 degrees, then what is the...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of 49.5° with coefficient of kinetic friction ?1 = 0.205. M2 has a mass of 5.45 kg and is on an incline of 31.5° with coefficient of kinetic friction ?2 = 0.105. Find the magnitude of the acceleration of M2 down the incline.
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
Two blocks with masses M1 and M2 are connected by a massless string that passes over...
Two blocks with masses M1 and M2 are connected by a massless string that passes over a massless pulley as shown. M1 has a mass of 2.25 kg and is on an incline of θ1=46.5∘ with coefficient of kinetic friction μ1=0.205. M2 has a mass of 6.05 kg and is on an incline of θ2=33.5∘ with coefficient of kinetic friction μ2=0.105. The two‑block system is in motion with the block of mass M2 sliding down the ramp. Find the magnitude...
Two masses are connected by a string that passes over a pulley. The mass m1 is...
Two masses are connected by a string that passes over a pulley. The mass m1 is 9.2 kg, and the mass m2 is 1.6 kg. When the masses are simultaneously released from rest, what is the magnitude of their acceleration (in m/s2)? Neglect any friction. [Note: if you need to enter a number in scientific notation, use 'e'. For example, 1200 = 1.2e3 and 0.0012 = 1.2e-3. Include several decimal places in your calculations and your answer to avoid rounding...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 9.20 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has...
A mass m1 is connected by a light string that passes over a pulley of mass...
A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the tension in the string...
Two masses are connected by a massless string and a frictionless pulley. The masses of the...
Two masses are connected by a massless string and a frictionless pulley. The masses of the blocks are; m1=500 g and m2= 150g. The coefficiant of friction between m1 and the surface is 0.25. (a) What is the acceleration of the masses? (b) What is the tension in the string?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT