Question

In a well-insulated calorimeter, 1.0 kg of water at 20 ∘ C is mixed with 1.0...

In a well-insulated calorimeter, 1.0 kg of water at 20 ∘ C is mixed with 1.0 g of ice at 0 ∘ C . What is the net change in entropy Δ S sys of the system from the time of mixing until the moment the ice completely melts? The heat of fusion of ice is L f =3.34× 10 5 J/kg . Note that since the amount of ice is relatively small, the temperature of the water remains nearly constant throughout the process. Note also that the ice starts out at the melting point, and you are asked about the change in entropy by the time it just melts. In other words, you can assume that the temperature of the "ice water" remains constant as well. Express your answer numerically in joules per kelvin. Use two significant figures in your answer.

Homework Answers

Answer #1

Heat transferred to completely melt the ice

Q = mL

where L is heat of fusion for ice

Q = 1e-3 * 3.34e5

Q = 334 J

so,

Entropy change of ice

S = Q / T

S = 334 / 273.15

S = 1.22277 J/K

Now, for water

Q = mc (Tf - Ti)

Tf = 19.9201 oC

Entropy change of water

Sw = 1000 * 4.18 ln ( 293.07 / 293.15)

Sw = - 1.14086 J/K

so,

S (system) = S - Sw

S (system) = 0.082 J/K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice at 0◦C is added. The system comes to an equilibrium temperature of 20◦C. The heat capacity for water is 4190 J and the heat of fusion for ice is kg·K kJ LF =334kg. (a) Determine the amount of ice that was added to the water. (b) What is the change in the entropy associated with the ice melting? (c) What is the change in...
An insulated beaker with negligible mass contains liquid water with a mass of 0.225 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.225 kg and a temperature of 68.8 ∘C . Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to be 3.34×105 J/kg . How much ice at a temperature of -15.3 ∘C∘C must be dropped into the water so that the final temperature of the system will...
An insulated beaker with negligible mass contains liquid water with a mass of 0.345 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.345 kg and a temperature of 76.5 ∘C . How much ice at a temperature of -19.9 ∘C must be dropped into the water so that the final temperature of the system will be 27.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and a temperature of 68.6 ∘C . How much ice at a temperature of -20.0 ∘C must be dropped into the water so that the final temperature of the system will be 25.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.235 kg and a temperature of 66.5 ∘C . How much ice at a temperature of -18.4 ∘C must be dropped into the water so that the final temperature of the system will be 20.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.310 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.310 kg and a temperature of 74.1 ?C . How much ice at a temperature of -10.2 ?C must be dropped into the water so that the final temperature of the system will be 37.0 ?C ? Take the specific heat of liquid water to be 4190 J/kg?K , the specific heat of ice to be 2100 J/kg?K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.200 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.200 kg and a temperature of 76.0 ?C . How much ice at a temperature of -20.4 ?C must be dropped into the water so that the final temperature of the system will be 33.0 ?C ? Take the specific heat of liquid water to be 4190 J/kg?K , the specific heat of ice to be 2100 J/kg?K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.270 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.270 kg and a temperature of 78.7 ?C . How much ice at a temperature of -14.0 ?C must be dropped into the water so that the final temperature of the system will be 40.0 ?C ? Take the specific heat of liquid water to be 4190 J/kg?K , the specific heat of ice to be 2100 J/kg?K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.230 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.230 kg and a temperature of 66.4 ∘C . a)How much ice at a temperature of -23.3 ∘C must be dropped into the water so that the final temperature of the system will be 23.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water to...
An insulated beaker with negligible mass contains liquid water with a mass of 0.270 kg and...
An insulated beaker with negligible mass contains liquid water with a mass of 0.270 kg and a temperature of 65.7 ∘ C . How much ice at a temperature of -14.5 ∘C must be dropped into the water so that the final temperature of the system will be 28.0 ∘C ? Take the specific heat of liquid water to be 4190 J/kg⋅K , the specific heat of ice to be 2100 J/kg⋅K , and the heat of fusion for water...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT