Question

P4. (20 pts) Use CONSERVATION OF ENERGY to determine how HIGH a projectile of mass m...

P4. (20 pts) Use CONSERVATION OF ENERGY to determine how HIGH a projectile of mass
m goes if STARTED with VELOCITY v0 at angle q with respect to the ground. Please give all
your answers below in terms of v0, q, m, and g.
a) (4 pts) What is the KINETIC ENERGY at the start?
b) (4 pts) What is the KINETIC ENERGY at the HIGHEST point of its flight?
c) (4 pts) What is the GRAVITATIONAL POTENTIAL ENERGY at the start?
d) (4 pts) What is the GRAVITATION POTENTIAL ENERGY at the HIGHEST point of
its flight?
e) (4 pts) Using all that, determine how HIGH it goes a in terms of v0, q, and g.

Homework Answers

Answer #1

The horizontal velocity of projectile remains constant throughout the motion. So the initial horizontal velocity will be equal to the horizontal velocity at highest point. We use conservation of energy principle to find the values as shown below

***********************************************************************************************
This concludes the answers. If there is any mistake or omission, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Learning Goal: To understand how to apply the law of conservation of energy to situations with...
Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy K and potential energy U. For such...
Problem solving with mechanical energy conservation If mechanical energy is conserved, it gives us an equation...
Problem solving with mechanical energy conservation If mechanical energy is conserved, it gives us an equation that can be helpful in solving problems. The Sidewinder is a simple roller coaster at Elitch Gardens in Denver, CO. The coaster goes down a hill, around a loop, and back up a hill. It stops and then doubles back, taking riders backwards through the loop again. Normally a roller coaster has to start much higher than the top of the loop to ensure...
A satellite of mass m is in an elliptical orbit around the Earth, which has mass...
A satellite of mass m is in an elliptical orbit around the Earth, which has mass Me and radius Re. The orbit varies from closest approach of distance a at point A to maximum distance of b from the center of the Earth at point B. At point A, the speed of the satellite is v0. Assume that the gravitational potential energy Ug = 0 when masses are an infinite distance apart. Express your answers in terms of some or...
A 41.0-kg skier with an initial speed of 1.5 X 101 m/s coasts up a 2.50-m-high...
A 41.0-kg skier with an initial speed of 1.5 X 101 m/s coasts up a 2.50-m-high rise as shown below. The coefficient of friction between her skis and the snow is 0.0800. a) Where do you define the gravitational potential energy Ug to equal 0 J? b) If the skier has energy at the bottom of the hill state what kind it is and determine its value. c) If the skier reaches the top of the hill what kind of...
answer all questions 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking...
answer all questions 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill is 279 meters...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m...
Step 1: Before the collision, the total momentum is pbefore = mv0 + 0 where m is the ball’s mass and v0 is the ball’s speed. The pendulum is not moving so its contribution to the total momentum is zero. After the collision, the total momentum is pafter = (m + M) V, where m is the ball’s mass, M is the pendulum mass, and V is the velocity of the pendulum with the ball stuck inside (see the picture...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill is...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill...
12. A rocket ship of mass 1.00 x 104 kg is located 1.00 x 1010 m...
12. A rocket ship of mass 1.00 x 104 kg is located 1.00 x 1010 m from Earth’s centre.             (a) Determine its gravitational potential energy at this point, considering only Earth.             (b) How much kinetic energy must it have at this location to be capable of escaping from       Earth’s gravitational field?             (c) What is its escape speed from Earth at this position?
In proton-beam therapy, a high-energy beam of protons is fired at a tumor. The protons come...
In proton-beam therapy, a high-energy beam of protons is fired at a tumor. The protons come to rest in the tumor,depositing their kinetic energy and breaking apart the tumor’s DNA, thus killing its cells. The protons gain their energy by being discharged through a type of capacitor with a potential difference of 20MV and have a starting speed of 1.88 x 10^8 m/s. Using what you know of the behavior of a point charge in an electrostatic field and the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT