Question

A railroad freight car, mass 20 000 kg, is allowed to coast along a level track...

A railroad freight car, mass 20 000 kg, is allowed to coast along a level track at a speed of 2.0 m/s. It collides and couples with a 50 000-kg loaded second car, initially at rest and with brakes released. What percentage of the initial kinetic energy of the 20 000-kg car is preserved in the two-coupled cars after collision?

Question 10 options:

14%

23%

29%

31%

Homework Answers

Answer #1

Mass of the first car = m1 = 20000 kg

Mass of the second car = m2 = 50000 kg

Initial speed of the first car = V1 = 2 m/s

Initial speed of the second car = V2 = 0 m/s (At rest)

Speed of both the cars after the collision = V3

By conservation of linear momentum,

m1V1 + m2V2 = (m1 + m2)V3

(20000)(2) + (50000)(0) = (20000 + 50000)V3

V3 = 0.5714 m/s

Initial kinetic energy of the system = KE1

KE1 = m1V12/2

KE1 = (20000)(2)2/2

KE1 = 40000 J

Final kinetic energy of the system = KE2

KE2 = (m1 + m2)V32/2

KE2 = (20000 + 50000)(0.5714)2/2

KE2 = 11427.43 J

Percentage of the initial kinetic energy preserved = P

P = 29%

Percentage of the initial kinetic energy preserved in the two coupled cars after the collision = 29%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a railroad freight car, mass 17000kg, is allowed to coast along a level track at a...
a railroad freight car, mass 17000kg, is allowed to coast along a level track at a speed of 3m/s . it collides and couples with a 50,000 kg loaded second car, initially at rest and with brakes released. what percentage of the initial kinetic energy in the 17000 kg car is preserved in the two coupled cars after collision?
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples...
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? (b) How much kinetic energy is lost in the collision?
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples...
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? _______ m/s (b) How much kinetic energy is lost in the collision? _______ J
A railroad car of mass 2.70 ✕ 104 kg moving at 3.50 m/s collides and couples...
A railroad car of mass 2.70 ✕ 104 kg moving at 3.50 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 2.55 ✕ 104 kg moving at 3.25 m/s collides and couples...
A railroad car of mass 2.55 ✕ 104 kg moving at 3.25 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 3.15 ✕ 104 kg moving at 3.10 m/s collides and couples...
A railroad car of mass 3.15 ✕ 104 kg moving at 3.10 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? ____m/s (b) How much kinetic energy is lost in the collision? _____J
A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides and couples...
A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 22 500 kg is traveling east 5.50 m/s and collides with...
A railroad car of mass 22 500 kg is traveling east 5.50 m/s and collides with a railroad car of mass 30 000 kg traveling west 1.50 m/s. Find the velocity of the railroad cars that become coupled after the collision.
A railroad car of mass 2.41 104 kg is moving with a speed of 4.10 m/s....
A railroad car of mass 2.41 104 kg is moving with a speed of 4.10 m/s. It collides and couples with three other coupled railroad cars, each of the same mass as the single car and moving in the same direction with an initial speed of 2.05 m/s. (a) What is the speed of the four cars after the collision? (Round your answer to at least two decimal places.) (b) How much mechanical energy is lost in the collision?
A railroad car moving at a speed of 3.50 m/s overtakes, collides and couples with two...
A railroad car moving at a speed of 3.50 m/s overtakes, collides and couples with two coupled railroad cars moving in the same direction at 1.40 m/s. All cars have a mass of mass 3.3x10^4 kg. (a) Determine the speed of the three coupled cars after the collision. (Give your answer to at least 2 decimal places.) m/s (b) Determine the kinetic energy lost in the collision. J
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT