Question

Two equal masses of 2.0 kg are at the ends of a 1.00 kg mass and...

Two equal masses of 2.0 kg are at the ends of a 1.00 kg mass and 120.0 cm-long rod. The rod spins at 30.0 rpm about an axis through its midpoint. Suddenly, a compressed gas expands the rod out to a length of 180 cm. What is the rpm of the system after the expansion? Find speed of masses before and after expansion.

Homework Answers

Answer #1

Dear student,

Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.

Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A massless rod of length 1.00 m has a 2.00-kg mass attached to one end and...
A massless rod of length 1.00 m has a 2.00-kg mass attached to one end and a 3.00-kg mass attached to the other (See Fig. 1). The system rotates about a fixed axis perpendicular to the rod that passes through the rod 30.0 cm from the end with the 3.00-kg mass attached. The kinetic energy of the system is 100 J. What is the angular speed of this system? and what is the moment of inertia?
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two...
A cylindrical rod of length 2.0 m, radius 0.5 m, and mass 1.5 kg has two spheres attached on its ends. The centers of the spheres are 1.0 m from the center of the rod. The mass of each sphere is 0.66 kg. The rod is capable of rotating about an axis passing through its center and perpendicular to the plane of the page, but the set up is stationary to begin with. A small mass of value 0.19 kgmoving...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass,...
Two 2.4 kg balls are attached to the ends of a thin rod of negligible mass, 54 cm in length. The rod is free to rotate in a vertical plane about a horizontal axis through its center. With the rod initially horizontal as shown, a 0.33 kg wad of wet putty drops onto one of the balls with a speed of 3.7 m/sec and sticks to it. 1)What is the ratio of the magnitude of angular momentum of the entire...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 4.80 m/s. (Enter the magnitude to at least two decimal places in kg · m2/s.) Two masses...
Two Balls and a Thin Rod Two balls of mass 2.43 kg are attached to the...
Two Balls and a Thin Rod Two balls of mass 2.43 kg are attached to the ends of a thin rod of negligible mass and length 60 cm. The rod is free to rotate without friction about a horizontal axis through its center. A putty wad of mass 126 gdrops onto one of the balls, with a speed 2.6 m/s, and sticks to it. What is the angular speed of the system just after the putty wad hits? What is...
Two masses, m1= 1.00 kg and m2= 2.00 kg, are attached to the ends of a...
Two masses, m1= 1.00 kg and m2= 2.00 kg, are attached to the ends of a light cord, which passes over a frictionless pulley in the shape of a uniform disk of mass 3.00 kg. How long does it take the 2.00 kg mass to fall a vertical distance of 1.00 m? What is the tension of either side of the pulley? (Answers: t= 0.958 sec; T1= 12.0 N; T2= 15.2 N I just need help with the steps for...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg...
A 1.50-kg rod 1.00m long has a 2.00-kg mass attached to one end and a 4.00-kg mass attached to the other. The system rotates at a constant angular speed about a fixed axis perpendicular to the rod that passes through the rod 40.0 cm from the end with the 4.00-kg mass attached. The angular speed of the system is 150 rad/s. a) What is the total moment of inertia of this system (including the rod and two masses) about the...
Two 3.20 kg balls are attached to the ends of a thin rod of length 75.0...
Two 3.20 kg balls are attached to the ends of a thin rod of length 75.0 cm and negligible mass. The rod is free to rotate in a vertical plane without friction about a horizontal axis through its center. With the rod initially horizontal (the figure), a 65.0 g wad of wet putty drops onto one of the balls, hitting it with a speed of 3.68 m/s and then sticking to it. (a) What is the angular speed of the...
Two identical 0.200-kg masses are pressed against opposite ends of a light spring of force constant...
Two identical 0.200-kg masses are pressed against opposite ends of a light spring of force constant 1.75 N/cm, compressing the spring by 39.0 cm from its normal length. Find the speed of each mass when it has moved free of the spring on a frictionless, horizontal table.
) A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of...
) A dumbbell-shaped object is composed by two equal masses, m, connected by a rod of negligible mass and length r. If I1 is the moment of inertia of this object with respect to an axis passing through the center of the rod and perpendicular to it and I2 is the moment of inertia with respect to an axis passing through one of the masses and perpendicular to the rod, it follows that a. It depends on the values of...